Domain Adaptation模型之pix2pix原理简介

一、Domain Adaptation 简述

Domain Adaptation是机器学习和计算机视觉领域的一个研究分支,主要处理如何将在一个领域(源域)上学习到的知识或模型,有效地应用到另一个不同但相关的领域(目标域)。由于源域和目标域的数据分布可能存在较大的差异,直接应用源域模型到目标域可能会导致性能下降。因此,Domain Adaptation的目标是找到一种方法,减小源域和目标域之间的差异,使得模型在目标域上也能取得较好的性能,这里介绍使用过的一种经典算法pix2pix ,出自《Image-to-Image Translation with Conditional Adversarial Networks》

二、pix2pix模型

文章链接

https://link.zhihu.com/?target=https%3A//arxiv.org/abs/1703.1059

效果图如下:

2.1. 网络结构与训练过程

2.1.1 生成器网络:

生成器G网络采用了U-Net结构,作者认为图像的底层特征同样重要,相比于原始的encoder-decorder结构,增加了跳连部分,使低频信息可以更多的传递到输出;下图为原始的Unet结构;

2.2.2 判别器网络:

判别器D网络要输入成对的图像,类似于cGAN,如果G(x)和x是对应的,对于生成器来说希望判别为1;如果G(x)和x不是对应的,对于生成器来说希望判别器判别为0;

与之不同的是作者提出了"PatchGAN"的概念,PatchGAN是对图片中的每一个N×N的小块(patch)计算概率,然后再将这些概率求平均值作为整体的输出,这样的结果往往是通过卷积层来达到的,因为逐次叠加的卷积层最终输出的这个N x N 的矩阵,其中的每一个元素,实际上代表着原图中的一个比较大的感受野;

这样设计的优点是:PatchGAN具有更少的参数,比分类整个图像要运行更快;

2.2.3 损失函数

条件Gan的优化目标为:

pix2pix沿用了上述目标函数,但是判定器不观察X;

pix2pix 将GAN目标与更传统的损失混合,同时增加了L1-loss,因为L1可以减少模糊;

最终的loss函数为:

不同loss的比较效果:

三、总结

pix2pix是基于深度学习的图像到图像翻译模型,在图像风格转换、图像修复、图像增强等多个方面都有广泛的应用。通过理解它们的原理和网络结构,我们可以更好地应用这些模型来解决实际问题;

四、pytorch代码实现参考

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

个人水平有限,有问题随时联系~

相关推荐
SweetCode3 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
ゞ 正在缓冲99%…16 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong17 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
惊鸿.Jh36 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode
明灯L37 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
碳基学AI43 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
独好紫罗兰1 小时前
洛谷题单3-P5718 【深基4.例2】找最小值-python-流程图重构
开发语言·python·算法
正脉科工 CAE仿真1 小时前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
Dovis(誓平步青云)2 小时前
【数据结构】排序算法(中篇)·处理大数据的精妙
c语言·数据结构·算法·排序算法·学习方法