Python使用whisper实现语音识别(ASR)

目录

Whisper的安装

Whisper的基本使用

识别结果转简体中文

断句


Whisper的安装

Whisper是OpenAI的一个强大的语音识别库,支持离线的语音识别。在使用之前,需要先安装它的库:

复制代码
pip install openai-whisper

使用whisper,还需安装setuptools-rust:

复制代码
pip install setuptools-rust

但是,whisper安装时,自带的pytorch可能有些bug,因此需要卸载重装:

卸载:

复制代码
pip uninstall torch

重装:

复制代码
pip install torch

另外,需要通过choco安装ffmpeg库。先通过管理员权限的PowerShell安装choco:

复制代码
Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; 
iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

然后,在管理员权限的PowerShell安装ffmpeg:

复制代码
choco install ffmpeg

完成这些步骤之后,我们就可以使用啦!

Whisper的基本使用

whisper的基本代码如下:

python 复制代码
import whisper

model = whisper.load_model("base")
result = model.transcribe("zh.wav")
print(result['text'])

其中,zh.wav可以换成你自己的音频。我的控制台输出:

python 复制代码
我們說,40月2日混淩土不能與引力長相互攪拌不然會因為愛銀斯坦的相對論而引發雜串的食品安全問題這是嚴重的金融危機

可以看到,它的识别结果还行(因为我的音频是AI合成的,识别会有一定误差),但是输出的是繁体中文,我们需要把他变成简体中文。

识别结果转简体中文

可以通过opencc库实现转化,先安装:

python 复制代码
pip install opencc

然后修改代码:

python 复制代码
import whisper
import opencc

model = whisper.load_model("base")
result = model.transcribe("zh.wav")
cc = opencc.OpenCC("t2s")
res = cc.convert(result['text'])
print(res)

输出:

python 复制代码
我们说,40月2日混凌土不能与引力长相互搅拌不然会因为爱银斯坦的相对论而引发杂串的食品安全问题这是严重的金融危机

断句

在一个语音中,我们都会有一些停顿。但是,在识别结果中,这些停顿并没有被完全表示出来。我们可以如此修改代码,实现按断句输出结果:

python 复制代码
import whisper
import opencc

model = whisper.load_model("base")
result = model.transcribe("zh.wav")
cc = opencc.OpenCC("t2s")
for i in result['segments']:
    res = cc.convert(i['text'])
    print(f"断句开始于{i['start']}秒,结束于{i['end']}秒,识别结果:{res}")

输出:

python 复制代码
断句开始于0.0秒,结束于5.36秒,识别结果:我们说,40月2日混凌土不能与引力长相互搅拌
断句开始于5.36秒,结束于11.14秒,识别结果:不然会因为爱银斯坦的相对论而引发杂串的食品安全问题
断句开始于11.14秒,结束于13.44秒,识别结果:这是严重的金融危机
相关推荐
红衣小蛇妖1 小时前
神经网络-Day44
人工智能·深度学习·神经网络
忠于明白1 小时前
Spring AI 核心工作流
人工智能·spring·大模型应用开发·spring ai·ai 应用商业化
大写-凌祁2 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号2 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM2 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
IT_陈寒2 小时前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端
jndingxin2 小时前
OpenCV CUDA模块图像处理------创建一个模板匹配(Template Matching)对象函数createTemplateMatching()
图像处理·人工智能·opencv
盛寒2 小时前
N元语言模型 —— 一文讲懂!!!
人工智能·语言模型·自然语言处理
weixin_177297220693 小时前
家政小程序开发——AI+IoT技术融合,打造“智慧家政”新物种
人工智能·物联网
Jay Kay3 小时前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归