R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第八:trans_func class

生态学研究人员通常对微生物群落的功能特征感兴趣,因为功能或代谢数据对于解释微生物群落的结构和动态以及推断其潜在机制是强有力的。

由于宏基因组测序复杂且昂贵,利用扩增子测序数据预测功能谱是一个很好的选择。

有几个软件经常用于此目标,如PICRUSt, Tax4Fun和FAPROTAX。

这些工具可以很好地用于基于测序结果的原核生物群落的功能谱预测。此外,获得每个分类群或OTU的功能也很重要,

而不仅仅是整个群落的概况。但是很难知道每个OTU的确切功能。FAPROTAX数据库是根据已发表在书籍和文献中的已知研究成果,

对原核生物的性状和特征进行的汇总。我们将原核生物的分类信息与该数据库进行比对,以确定原核生物在生物地球化学作用上的特征。

我们还实现了FUNGuild和FungalTraits数据库来识别真菌性状。

> t1 <- trans_func$new(dataset = dataset)

> t1$cal_spe_func(prok_database = "FAPROTAX")

> t1$cal_spe_func(fungi_database = "FungalTraits")

计算群落中具有特定性状的物种百分比。具有特定性状的分类群所占百分比可以反映群落中相应的功能潜力。

因此,该方法是一种不考虑类群间系统发育距离的功能冗余表示。

> t1$cal_spe_func_perc(abundance_weighted = TRUE)

> t1$show_prok_func(use_func = "methanotrophy")

> t1$plot_spe_func_perc()

#然后我们尝试将社区的res_spe_func_perc与环境变量联系起来

> t3 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

> t3cal_cor(add_abund_table = t1res_spe_func_perc, cor_method = "spearman")

> library(pheatmap)

> t3$plot_cor(pheatmap = TRUE)

microeco就先分享到这里,这个包比较复杂,我只是分享了部分,想要学习,得从事具体的项目。这些代码,我都跑过一边,大家可以先跑跑。

相关推荐
私域实战笔记17 小时前
企业微信SCRM怎么选?工具适配与落地实操指南
人工智能·数据挖掘·企业微信·scrm·企业微信scrm
m0_7482480218 小时前
基于 C++ 的高性能批量媒体文件压缩程序
c++·人工智能·数据挖掘
OpenBayes19 小时前
OCR 新范式!DeepSeek 以「视觉压缩」替代传统字符识别;Bald Classification数据集助力高精度人像分类
人工智能·深度学习·分类·数据挖掘·ocr·数据集·deepseek
汤姆yu21 小时前
基于大数据的短视频流量数据分析与可视化
大数据·数据挖掘·数据分析
Tiger Z21 小时前
《R for Data Science (2e)》免费中文翻译 (第12章) --- Logical vectors(1)
数据分析·r语言·数据科学·免费书籍
Dev7z1 天前
结合HOG特征与支持向量机(SVM)的车牌字符识别系统
人工智能·分类·数据挖掘
geneculture1 天前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学
年年测试1 天前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
格图素书1 天前
数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法
算法·数据挖掘·聚类
AI纪元故事会1 天前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn