R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第八:trans_func class

生态学研究人员通常对微生物群落的功能特征感兴趣,因为功能或代谢数据对于解释微生物群落的结构和动态以及推断其潜在机制是强有力的。

由于宏基因组测序复杂且昂贵,利用扩增子测序数据预测功能谱是一个很好的选择。

有几个软件经常用于此目标,如PICRUSt, Tax4Fun和FAPROTAX。

这些工具可以很好地用于基于测序结果的原核生物群落的功能谱预测。此外,获得每个分类群或OTU的功能也很重要,

而不仅仅是整个群落的概况。但是很难知道每个OTU的确切功能。FAPROTAX数据库是根据已发表在书籍和文献中的已知研究成果,

对原核生物的性状和特征进行的汇总。我们将原核生物的分类信息与该数据库进行比对,以确定原核生物在生物地球化学作用上的特征。

我们还实现了FUNGuild和FungalTraits数据库来识别真菌性状。

> t1 <- trans_func$new(dataset = dataset)

> t1$cal_spe_func(prok_database = "FAPROTAX")

> t1$cal_spe_func(fungi_database = "FungalTraits")

计算群落中具有特定性状的物种百分比。具有特定性状的分类群所占百分比可以反映群落中相应的功能潜力。

因此,该方法是一种不考虑类群间系统发育距离的功能冗余表示。

> t1$cal_spe_func_perc(abundance_weighted = TRUE)

> t1$show_prok_func(use_func = "methanotrophy")

> t1$plot_spe_func_perc()

#然后我们尝试将社区的res_spe_func_perc与环境变量联系起来

> t3 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

> t3cal_cor(add_abund_table = t1res_spe_func_perc, cor_method = "spearman")

> library(pheatmap)

> t3$plot_cor(pheatmap = TRUE)

microeco就先分享到这里,这个包比较复杂,我只是分享了部分,想要学习,得从事具体的项目。这些代码,我都跑过一边,大家可以先跑跑。

相关推荐
天桥下的卖艺者4 小时前
R语言使用scitable包交互效应深度挖掘一个陌生数据库
数据库·r语言·交互
dundunmm9 小时前
【数据挖掘】知识蒸馏(Knowledge Distillation, KD)
人工智能·深度学习·数据挖掘·模型·知识蒸馏·蒸馏
weixin_贾10 小时前
R+VIC模型融合实践技术应用及未来气候变化模型预测
r语言·vic模型·未来气候变化
KY_chenzhao10 小时前
R+VIC模型融合实践技术应用-防洪规划、水资源管理以及未来气候预测等领域
r语言·vic模型·水文模型·气候变化
BingLin-Liu14 小时前
第十五届蓝桥杯R格式(高精度*低精度算法)
算法·蓝桥杯·r语言
浪九天15 小时前
面向高质量视频生成的扩散模型方法-算法、架构与实现【附核心代码】
python·深度学习·算法·机器学习·自然语言处理·数据挖掘·音视频
蜡笔小新..1 天前
R语言和RStudio安装
开发语言·r语言
ALPH_1 天前
R语言的基础命令及实例操作
开发语言·数据分析·r语言·perl·r语言-4.2.1
刘大猫261 天前
一、MyBatis简介:MyBatis历史、MyBatis特性、和其它持久化层技术对比、Mybatis下载依赖包流程
人工智能·数据挖掘·数据分析
陆鳐LuLu1 天前
深度学习与数据挖掘题库:401-500题精讲
人工智能·深度学习·数据挖掘