结构体
1 结构体的声明
1.1 结构的基础知识
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
1.2 结构的声明
struct tag
{
member-list;
}variable-list;
例如描述一个学生:
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
1.3 特殊的声明
在声明结构的时候,可以不完全的声明。
比如:
//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], *p;
上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?
//在上面代码的基础上,下面的代码合法吗?
p = &x;
警告:
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。
1.4 结构的自引用
在结构中包含一个类型为该结构本身的成员是否可以呢?
//代码1
struct Node
{
int data;
struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?
正确的自引用方式:
//代码2
struct Node
{
int data;
struct Node* next;
};
注意:
//代码3
typedef struct
{
int data;
Node* next;
}Node;
//这样写代码,可行否?
//解决方案:
typedef struct Node
{
int data;
struct Node* next;
}Node;
1.5 结构体变量的定义和初始化
有了结构体类型,那如何定义变量,其实很简单
struct Point
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu //类型声明
{
char name[15];//名字
int age; //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化
1.6 结构体内存对齐
我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐
//练习1
struct S1
{
char c1;
int i;
char c2;
};
printf("%d\n", sizeof(struct S1));
//练习2
struct S2
{
char c1;
char c2;
int i;
};
printf("%d\n", sizeof(struct S2));
//练习3
struct S3
{
double d;
char c;
int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
printf("%d\n", sizeof(struct S4));
练习一: 12
练习二: 8
练习三:16
练习四: 32
考点
如何计算?
首先得掌握结构体的对齐规则
1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS中默认的值为8
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。5.数组是按照数组元素类型去对齐的
为什么存在内存对齐?
大部分的参考资料都是如是说的:
- 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特
定类型的数据,否则抛出硬件异常。
- 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访
问。
总体来说:
结构体的内存对齐是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起。
//例如:
struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};
S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别
S1:12
S2:8
1.7 修改默认对齐数
之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。
#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
//输出的结果是什么?
printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
return 0;
}
结论:
结构在对齐方式不合适的时候,我么可以自己更改默认对齐数
写一个宏,计算结构体中某变量相对于首地址的偏移,并给出说明
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE*)0)->MEMBER)
1.8 结构体传参
直接上代码:
struct S
{
int data[1000];
int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}
上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的
下降。
结论:
结构体传参的时候,要传结构体的地址。
2. 位段
结构体讲完就得讲讲结构体实现 位段 的能力。
2.1 什么是位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。
比如:
struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};
A就是一个位段类型。
那位段A的大小是多少?
printf("%d\n", sizeof(struct A));
.2 位段的内存分配
-
位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
-
位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
-
位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
//一个例子
struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?
2.3 位段的跨平台问题
-
int 位段被当成有符号数还是无符号数是不确定的。
-
位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机
器会出问题。
-
位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
-
当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是
舍弃剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。
2.4 位段的应用
3. 枚举
枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:
一周的星期一到星期日是有限的7天,可以一一列举。
性别有:男、女、保密,也可以一一列举。
月份有12个月,也可以一一列举
这里就可以使用枚举了。
3.1 枚举类型的定义
enum Day//星期
{
Mon,
Tues,
Wed,
Thur,
Fri,
Sat,
Sun
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};
enum Color//颜色
{
RED,
GREEN,
BLUE
};
以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1 ,当然在定义的时候也可以赋初值。
例如:
enum Color//颜色
{
RED=1,
GREEN=2,
BLUE=4
};
3.2 枚举的优点
为什么使用枚举?
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
-
增加代码的可读性和可维护性
-
和#define定义的标识符比较枚举有类型检查,更加严谨。
-
防止了命名污染(封装)
-
便于调试
-
使用方便,一次可以定义多个常量
3.3 枚举的使用
enum Color//颜色
{
RED=1,
GREEN=2,
BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
clr = 5; //不可以
4. 联合(共用体)
4.1 联合类型的定义
联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如
//联合类型的声明
union Un
{
char c;
int i;
};
//联合变量的定义
union Un un;
//计算连个变量的大小
printf("%d\n", sizeof(un));
共用同一块空间,但不能同时使用,
4.2 联合的特点
联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联
合至少得有能力保存最大的那个成员)。
union Un
{
int i;
char c;
};
union Un un;
// 下面输出的结果是一样的吗?
printf("%d\n", &(un.i));
printf("%d\n", &(un.c));
//下面输出的结果是什么?
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);
面试题:
判断当前计算机的大小端存储
4.3 联合大小的计算
联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
比如:
union Un1
{
char c[5];
int i;
};
union Un2
{
short c[7];
int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));
printf("%d\n", sizeof(union Un2));
8,16