ARM day4

.text 
.global _start
_start: 
    
@使能GPIOE  F的外设时钟  RCC_MP_AHB4ENSETR的第[4:5]设置为1即可使能GPIOE时钟
LDR R0,=0X50000A28   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
ORR R1,R1,#(0x3<<4)   @将第4 5位设置为1
STR R1,[R0]  @将修改后的数值写回

@设置PE10,PE8为输出  将GPIOE_MODER[21:20]和[17:16]设置为01,就能够让PE10为输出工作模式
LDR R0,=0X50006000   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x33<<16)   @清0
ORR R1,R1,#(0x11<<16)   @01 0001
STR R1,[R0]  @将修改后的数值写回


@设置PE10为推完输出  将GPIOE_OTYPER寄存器[10]设置为0,就能够让PE10以推挽输出模式进行工作
LDR R0,=0X50006004   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x5<<8)   @将第10清0
STR R1,[R0]  @将修改后的数值写回

@设置PE10为低速输出
LDR R0,=0X50006008   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x33<<16)   @将第21:20清0
STR R1,[R0]  @将修改后的数值写回

@设置无上拉下拉电阻 
LDR R0,=0X5000600C   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x33<<16)   @将第21:20清0
STR R1,[R0]  @将修改后的数值写回

@设置PF10为输出  将GPIOF_MODER[21:20]设置为01,就能够让PF10为输出工作模式
LDR R0,=0X50007000   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x3<<20)   @清0
ORR R1,R1,#(0x1<<20)   @01
STR R1,[R0]  @将修改后的数值写回


@设置PE10为推完输出  将GPIOF_OTYPER寄存器[10]设置为0,就能够让PF10以推挽输出模式进行工作
LDR R0,=0X50007004   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x1<<10)   @将第10清0
STR R1,[R0]  @将修改后的数值写回

@设置PF10为低速输出
LDR R0,=0X50007008   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x3<<20)   @将第21:20清0
STR R1,[R0]  @将修改后的数值写回

@设置无上拉下拉电阻 
LDR R0,=0X5000700C   @指定寄存器地址
LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
BIC R1,R1,#(0x3<<20)   @将第21:20清0
STR R1,[R0]  @将修改后的数值写回

loop:
@设置LED1亮
    BL LED13_ON
    BL DELAY
    BL LED13_OFF
    BL DELAY
	BL LED2_ON
	BL DELAY
	BL LED2_OFF
	BL DELAY
    b loop


LED13_ON:
   LDR R0,=0X50006014   @指定寄存器地址
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    ORR R1,R1,#(0x5<<8)   @将第10 8设置为1
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR
LED13_OFF:
   LDR R0,=0X50006014   @指定寄存器地址
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    BIC R1,R1,#(0x5<<8)   @将第10 8设置为0
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR
LED2_ON:
	LDR R0,=0X50007014    @指定寄存器地址
	LDR R1,[R0]    @将寄存器原来的数值读取出来,保存到R1中
	ORR R1,R1,#(0X1<<10)    @将第10设置为1
	STR R1,[R0]    @将修改后的数值写回 
	MOV PC,LR
LED2_OFF:
	LDR R0,=0X50007014     @指定寄存器地址
	LDR R1,[R0]            @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0X1<<10)     @将第10设置为0
	STR R1,[R0]            @将修改后的数值写回 
	MOV PC,LR

DELAY:
    LDR R3,=0x10000000
MM:
    CMP R3,#0
    SUBNE R3,R3,#1
    BNE MM
    MOV PC,LR
.end

视频:

VID_20240319_192733_哔哩哔哩_bilibili

相关推荐
极客小张29 分钟前
基于STM32MP157与OpenCV的嵌入式Linux人脸识别系统开发设计流程
linux·stm32·单片机·opencv·物联网
OH五星上将1 小时前
OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【扩展组件】上
linux·嵌入式硬件·harmonyos·openharmony·鸿蒙开发·liteos-a·鸿蒙内核
浅陌pa2 小时前
24:RTC实时时钟
c语言·stm32·单片机·嵌入式硬件
敲上瘾2 小时前
多态的使用和原理(c++详解)
开发语言·数据结构·c++·单片机·aigc·多态·模拟
小熊在忙fpga2 小时前
STM32如何修改外部晶振频率和主频
stm32·单片机·嵌入式硬件
我命由我123452 小时前
GPIO 理解(基本功能、模拟案例)
linux·运维·服务器·c语言·c++·嵌入式硬件·c#
学习日记hhh3 小时前
STM32G431RBT6(蓝桥杯)串口(发送)
stm32·单片机·嵌入式硬件
老李的森林3 小时前
嵌入式开发--STM32延时函数重构
stm32·单片机·嵌入式硬件·重构·延时
OH五星上将5 小时前
OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【内核通信机制】上
linux·嵌入式硬件·harmonyos·openharmony·鸿蒙开发·liteos-a·鸿蒙内核
爱桥代码的程序媛5 小时前
鸿蒙OpenHarmony【轻量系统内核通信机制(互斥锁)】子系统开发
嵌入式硬件·harmonyos·鸿蒙·openharmony··鸿蒙开发·子系统开发