神经网络梯度下降优化参数

损失函数

神经网络的最终目的就是最小化损失函数的过程,损失函数越小,证明模型的预测值就越接近真实值。

梯度下降算法

为了最优化损失函数,开发了梯度下降算法,这里的梯度就是高等数学中的梯度。

误差反向传播算法

前向传播介绍

参数解释:这里的神经元阈值跟生物学中的神经兴奋类似,达到阈值以后就输出。连接权重表明了不同变量对于最终的输出结果的影响程度的不同。

  • 首先用输入参数和连接权重的乘积减去阈值获得隐藏层值
  • 用隐藏层值和连接权重的乘积减去阈值获得真实输出
  • 计算真实值和预期值之间的误差

反向传播优化

  • 根据前向传播可以知道待优化的参数有权重和阈值两个参数
  • 优化过程涉及学习率这个概念,简单理解就是在进行梯度下降算法的时候每一次迭代过程中下降的幅度,下降幅度过大就会导致过拟合,下降幅度太小会导致很长时间都没法拟合到最优解。
相关推荐
乾元几秒前
数据投毒:如何通过训练数据污染埋下“后门”
运维·人工智能·网络协议·安全·网络安全·系统架构·自动化
KG_LLM图谱增强大模型2 分钟前
未来属于Agentic AI:释放人工智能在药企医学洞察中的潜力
人工智能
程序员徐师兄5 分钟前
Python 基于深度学习的电影评论可视化系统
python·深度学习·深度学习的电影评论可视化系统·深度学习评论情感分析
说私域7 分钟前
技术赋能直播运营:开源AI智能名片商城小程序助力个人IP构建与高效运营
人工智能·tcp/ip·小程序·流量运营·私域运营
程序员徐师兄10 分钟前
基于 Python 深度学习的电影评论情感分析算法
python·深度学习·算法·电影情感分析算法·评论情感分析
AI周红伟10 分钟前
周红伟:企业大模型微调和部署, DeepSeek-OCR v2技术原理和架构,部署案例实操。RAG+Agent智能体构建
大数据·人工智能·大模型·ocr·智能体·seedance
AomanHao14 分钟前
【阅读笔记】基于规则的清晰度评价值峰值搜索Development and real-time implementation of a rule-based au
人工智能·后端
_waylau15 分钟前
跟老卫学仓颉编程语言开发:浮点类型
人工智能·华为·harmonyos·鸿蒙·鸿蒙系统·仓颉
回眸&啤酒鸭15 分钟前
【回眸】AI新鲜事(七)——使用AI写日记
人工智能
过期的秋刀鱼!17 分钟前
深度学习-预测与向前传播
人工智能·深度学习