神经网络梯度下降优化参数

损失函数

神经网络的最终目的就是最小化损失函数的过程,损失函数越小,证明模型的预测值就越接近真实值。

梯度下降算法

为了最优化损失函数,开发了梯度下降算法,这里的梯度就是高等数学中的梯度。

误差反向传播算法

前向传播介绍

参数解释:这里的神经元阈值跟生物学中的神经兴奋类似,达到阈值以后就输出。连接权重表明了不同变量对于最终的输出结果的影响程度的不同。

  • 首先用输入参数和连接权重的乘积减去阈值获得隐藏层值
  • 用隐藏层值和连接权重的乘积减去阈值获得真实输出
  • 计算真实值和预期值之间的误差

反向传播优化

  • 根据前向传播可以知道待优化的参数有权重和阈值两个参数
  • 优化过程涉及学习率这个概念,简单理解就是在进行梯度下降算法的时候每一次迭代过程中下降的幅度,下降幅度过大就会导致过拟合,下降幅度太小会导致很长时间都没法拟合到最优解。
相关推荐
island13141 分钟前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构 Stream 调度机制
c语言·开发语言·神经网络
喵叔哟8 分钟前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
玄同76510 分钟前
SQLite + LLM:大模型应用落地的轻量级数据存储方案
jvm·数据库·人工智能·python·语言模型·sqlite·知识图谱
心疼你的一切10 分钟前
模态交响:CANN驱动的跨模态AIGC统一架构
数据仓库·深度学习·架构·aigc·cann
L、21810 分钟前
CANN 内存管理深度解析:高效利用显存,突破 AI 推理瓶颈
人工智能
聊聊科技11 分钟前
原创音乐人使用AI编曲软件制作伴奏,编曲用什么音源好听
人工智能
爱吃烤鸡翅的酸菜鱼11 分钟前
CANN ops-nn卷积算子深度解析与性能优化
人工智能·性能优化·aigc
向哆哆12 分钟前
CANN生态安全保障:cann-security-module技术解读
人工智能·安全·cann
The Straggling Crow13 分钟前
模型全套服务 cube-studio
人工智能
User_芊芊君子15 分钟前
CANN010:PyASC Python编程接口—简化AI算子开发的Python框架
开发语言·人工智能·python