神经网络梯度下降优化参数

损失函数

神经网络的最终目的就是最小化损失函数的过程,损失函数越小,证明模型的预测值就越接近真实值。

梯度下降算法

为了最优化损失函数,开发了梯度下降算法,这里的梯度就是高等数学中的梯度。

误差反向传播算法

前向传播介绍

参数解释:这里的神经元阈值跟生物学中的神经兴奋类似,达到阈值以后就输出。连接权重表明了不同变量对于最终的输出结果的影响程度的不同。

  • 首先用输入参数和连接权重的乘积减去阈值获得隐藏层值
  • 用隐藏层值和连接权重的乘积减去阈值获得真实输出
  • 计算真实值和预期值之间的误差

反向传播优化

  • 根据前向传播可以知道待优化的参数有权重和阈值两个参数
  • 优化过程涉及学习率这个概念,简单理解就是在进行梯度下降算法的时候每一次迭代过程中下降的幅度,下降幅度过大就会导致过拟合,下降幅度太小会导致很长时间都没法拟合到最优解。
相关推荐
2501_948120151 小时前
区块链与人工智能融合的隐私保护技术
人工智能·区块链
Liue612312316 小时前
基于YOLOv26的口罩佩戴检测与识别系统实现与优化
人工智能·yolo·目标跟踪
小二·7 小时前
Python Web 开发进阶实战 :AI 原生数字孪生 —— 在 Flask + Three.js 中构建物理世界实时仿真与优化平台
前端·人工智能·python
chinesegf8 小时前
文本嵌入模型的比较(一)
人工智能·算法·机器学习
哥布林学者8 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入 课后习题与代码实践
深度学习·ai
珠海西格电力8 小时前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
Black蜡笔小新8 小时前
视频汇聚平台EasyCVR打造校园消防智能监管新防线
网络·人工智能·音视频
珠海西格电力科技8 小时前
双碳目标下,微电网为何成为能源转型核心载体?
网络·人工智能·物联网·云计算·智慧城市·能源
2501_941837268 小时前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
HyperAI超神经8 小时前
加州大学构建基于全连接神经网络的片上光谱仪,在芯片级尺寸上实现8纳米的光谱分辨率
人工智能·深度学习·神经网络·机器学习·ai编程