指导基于指令的图像编辑通过多模态大型语言模型

MLLM引导的图像编辑技术报告

引言

随着视觉设计工具和视觉语言模型的广泛应用,多媒体行业对它们的需求日益增长。为了提高可访问性和控制性,多媒体行业越来越多地采用基于文本或指令的图像编辑技术。这些技术使用自然语言命令,而不是传统的区域掩码或详细描述,使得图像操作更加灵活和可控。然而,基于指令的方法通常提供简短的指导,可能对现有模型来说难以完全捕捉和执行。此外,扩散模型,以其能够创建逼真图像的能力,在图像编辑领域需求量很大。

MLLM引导的图像编辑(MGIE)

MLLM和扩散模型

扩散模型通过交换潜在的多模态映射来执行视觉操作,反映输入目标字幕的更改,并可以使用引导掩码来编辑图像的特定区域。而大型语言模型(LLM)在文本摘要、机器翻译、文本生成和回答问题等多样化语言任务中取得了显著进展。基于LLM,多模态大型语言模型(MLLM)可以使用图像作为自然输入并提供适当的视觉感知响应。

MGIE架构和方法

MGIE框架包含一个扩散模型和一个MLLM模型。扩散模型通过端到端训练来执行图像编辑,而MLLM框架学习预测精确的表达性指令。MGIE框架利用固有的视觉推导来处理模糊的人类命令,从而实现逼真的图像编辑。

简洁表达指令

MGIE框架使用文本提示作为主要语言输入,并从图像中提取详细说明。然后,它使用预训练的摘要器来获得简洁的叙述,并将简洁而明确的指导视为表达性指令。

基于潜在想象的图像编辑

MGIE框架采用编辑头将图像指令转换为实际的视觉指导。编辑头是一个序列到序列模型,它帮助将来自MLLM的顺序视觉令牌映射到有意义的潜在语义作为其编辑指导。

MGIE的学习

MGIE框架使用IPr2Pr数据集作为其主要的预训练数据,包含超过100万CLIP过滤的数据,其中包含从GPT-3模型中提取的指令,以及一个Prompt-to-Prompt模型来合成图像。

MGIE结果和评估

MGIE框架在Photoshop风格修改和局部优化方面表现出色,因为它可以学习领域相关的指导,使扩散模型能够展示出具体的编辑场景。此外,由于视觉感知指导与预期的编辑目标更加一致,MGIE框架在性能上持续优于LGIE。

结论

MGIE或MLLM引导的图像编辑是一个受MLLM启发的学习,旨在评估多模态大型语言模型,并分析它们如何通过文本或指导指令支持编辑,同时学习如何提供明确指导并推导表达性指令。MGIE编辑模型捕捉视觉信息,并通过端到端训练执行编辑或操作。与模糊和简短的指导相比,MGIE框架产生明确的视觉感知指令,从而实现合理的图像编辑。

相关推荐
袖手蹲9 小时前
Arduino UNO Q 从 Arduino Cloud 远程控制闪烁 LED
人工智能·单片机·嵌入式硬件·电脑
doris6109 小时前
设备点检、保养、维修一站式解决方案
大数据·数据库·人工智能
北京耐用通信9 小时前
终结混合网络调试噩梦:耐达讯自动化实现EtherCAT对DeviceNet设备的直接读写
网络·人工智能·物联网·网络协议·自动化·信息与通信
BFT白芙堂9 小时前
Franka机械臂“举一反三”:LLM Trainer如何通过单次演示实现自动化数据生成与长程任务学习
人工智能·学习·机器学习·自动化·模型训练·具身智能·franka
三掌柜6669 小时前
2025三掌柜赠书活动第四十八期 Vibe Coding:AI编程时代的认知重构
人工智能
多则惑少则明9 小时前
AI测试、大模型测试(三)AI语音产品测试&AI测试边界
人工智能·语音识别·ai大模型测试
后端小肥肠9 小时前
突破 LLM 极限!n8n + MemMachine 打造“无限流”小说生成器
人工智能·aigc·agent
道19939 小时前
PyTorch 从小白到高级进阶教程[工业级示例](三)
人工智能·pytorch·python
南山乐只9 小时前
【原文翻译搬运】Equipping agents for the real world with Agent Skills
人工智能·职场和发展·创业创新
AI营销快线10 小时前
金融AI内容合规,三类系统怎么选?
大数据·人工智能