Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之二 素描画风格效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之二 素描画风格效果

目录

[Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之二 素描画风格效果](#Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之二 素描画风格效果)

一、简单介绍

二、素描画风格效果实现原理

三、案例简单实现步骤


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python 基于 OpenCV 进行视觉图像处理,......

二、素描画风格效果实现原理

素描画风格效果的实现原理是将彩色图像转换为灰度图像,并使用边缘检测算法检测图像中的边缘,然后根据边缘信息来生成素描效果。

素描风格效果通常体现在边缘处的明暗变化,使得图像看起来更像手绘的素描画。

实现的基本原理:

  • 将图像转换为灰度图像: 使用灰度转换算法将彩色图像转换为灰度图像。可以采用简单的平均值法、加权平均法或者其他灰度转换方法来实现。
  • 边缘检测: 使用边缘检测算法检测图像中的边缘。常用的边缘检测算法包括 Sobel 算子、Canny 边缘检测算法等。这些算法可以提取图像中的边缘信息,并将边缘信息表示为明暗不同的像素值。
  • 生成素描效果: 根据边缘信息生成素描效果。通常可以通过将灰度图像与边缘图像进行混合,从而突出边缘处的明暗变化,达到素描效果。例如,可以通过增强边缘处的对比度或者模糊非边缘区域来实现。

同时,参考Photoshop素描的风格实现步骤:

(1)去色,将彩色图片转换成灰度图像。

图像的打开可以通过cv2.imread 代码打开,cv2.cvtColor 可以将图片转化为灰度图。你也可以在读取图片的时候增加一个额外的参数使得图像直接转化为灰度图

(2)复制去色图层,并且反色,反色为Y(i,j)=255-X(i,j)。

灰度图反色图像可以通过将灰度图每个像素点取反得到,由于灰度图的像素点的在0-255之间,将其取反的话就是255-当前像素点。

(3)对反色图像进行高斯模糊。

Gaussian blur能够很有效地减少图像中的噪声,能够将图像变得更加平滑一点,在数学上等价于用高斯核来对图像进行卷积操作。我们可以通过cv2.GaussianBlur来实现高斯模糊操作,参数ksize表示高斯核的大小。sigmaX和sigmaY分别表示高斯核在 X 和 Y 方向上的标准差。

(4)模糊后的图像叠加模式选择颜色减淡效果。

这一步骤自然就是需要得到最终的素描图结果了。在传统照相技术中,当需要对图片某个区域变得更亮或者变暗,可以通过控制它的曝光时间,这里就用到亮化(Dodging)和暗化(burning)的技术。

通过图像叠加对图像颜色减淡公式设计为:

C=MIN(A+(A×B)/(255-B),255)

其中,C为混合结果,A为去色后的像素点,B为高斯模糊后的像素点。也可以直接叠加两张图片。

涉及函数:

python 复制代码
# cv2.cvtColor可以将图片转化为灰度图
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)

# 灰度反色操作
img_gray_inv = 255 - img_gray


# 高斯模糊
img_blur = cv2.GaussianBlur(img_gray_inv, ksize=(21, 21),
                                sigmaX=0, sigmaY=0)


# 灰度图与高斯模糊底片的融合 (分为两种方式)
# 亮化操作
cv2.divide(image, 255 - mask, scale=scale)

# 暗化操作
255 - cv2.divide(255 - image, 255 - mask, scale=scale)

三、案例简单实现步骤

1、编写代码

2、运行效果

3、具体代码

python 复制代码
"""
素描画风格效果

    (1)去色,将彩色图片转换成灰度图像。

    图像的打开可以通过cv2.imread代码打开,cv2.cvtColor可以将图片转化为灰度图。你也可以在读取图片的时候增加一个额外的参数使得图像直接转化为灰度图

    (2)复制去色图层,并且反色,反色为Y(i,j)=255-X(i,j)。

    灰度图反色图像可以通过将灰度图每个像素点取反得到,由于灰度图的像素点的在0-255之间,将其取反的话就是255-当前像素点。

    (3)对反色图像进行高斯模糊。

    Gaussian blur能够很有效地减少图像中的噪声,能够将图像变得更加平滑一点,在数学上等价于用高斯核来对图像进行卷积操作。我们可以通过cv2.GaussianBlur来实现高斯模糊操作,参数ksize表示高斯核的大小。sigmaX和sigmaY分别表示高斯核在 X 和 Y 方向上的标准差。

    (4)模糊后的图像叠加模式选择颜色减淡效果。

    这一步骤自然就是需要得到最终的素描图结果了。在传统照相技术中,当需要对图片某个区域变得更亮或者变暗,可以通过控制它的曝光时间,这里就用到亮化(Dodging)和暗化(burning)的技术。

"""

import cv2
import numpy as np
 

def dodgeNaive(image, mask):
    """
    该版本,比较耗时,请使用 dogeV2
    :param image:
    :param mask:
    :return:
    """
    # determine the shape of the input image
    width, height = image.shape[:2]
 
    # prepare output argument with same size as image
    blend = np.zeros((width, height), np.uint8)
 
    for col in range(width):
        for row in range(height):
            # do for every pixel
            if mask[col, row] == 255:
                # avoid division by zero
                blend[col, row] = 255
            else:
                # shift image pixel value by 8 bits
                # divide by the inverse of the mask
                tmp = (image[col, row] << 8) / (255 - mask)
                # print('tmp={}'.format(tmp.shape))
                # make sure resulting value stays within bounds
                if tmp.any() > 255:
                    tmp = 255
                    blend[col, row] = tmp
 
    return blend
 
 
def dodgeV2(image, mask, scale):
    """
    灰度图与高斯模糊底片的融合
    :param image:
    :param mask:
    :param scale: 风格化效果,值显示的效果不同,越大,越白
    :return:
    """
    return cv2.divide(image, 255 - mask, scale=scale)
 
 
def burnV2(image, mask, scale):
    """
    灰度图与高斯模糊底片的融合
    :param image:
    :param mask:
    :param scale:风格化效果,值显示的效果不同,越大,越暗
    :return:
    """
    return 255 - cv2.divide(255 - image, 255 - mask, scale=scale)
 
 
def rgb_to_sketch(src_image_name, dst_image_name):
    """

    :param src_image_name: 原始图片
    :param dst_image_name: 要保留的风格化图片
    :return:
    """
    img_rgb = cv2.imread(src_image_name)

    # 将图像转化为灰度图
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)

    # 灰度反色操作
    img_gray_inv = 255 - img_gray

    # 高斯模糊
    img_blur = cv2.GaussianBlur(img_gray_inv, ksize=(21, 21),
                                sigmaX=0, sigmaY=0)

    # 素描画风格处理
    img_blend = dodgeV2(img_gray, img_blur, 250)
    # img_blend = burnV2(img_gray, img_blur, 250)

    # 图片显示
    # 设置窗口属性,并显示图片
    cv2.namedWindow("original", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('original', img_rgb)
    cv2.namedWindow("gray", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('gray', img_gray)
    cv2.namedWindow("gray_inv", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('gray_inv', img_gray_inv)
    cv2.namedWindow("gray_blur", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('gray_blur', img_blur)
    cv2.namedWindow("sketch drawing effect", cv2.WINDOW_KEEPRATIO)
    cv2.imshow("sketch drawing effect", img_blend)

    cv2.waitKey(0)
    cv2.destroyAllWindows()

    # 保存图片
    cv2.imwrite(dst_image_name, img_blend)
 
 
if __name__ == '__main__':
    src_image_name = 'Images/DogFace.jpg'
    dst_image_name = 'Images/sketch_example.jpg'
    rgb_to_sketch(src_image_name, dst_image_name)
相关推荐
GL_Rain32 分钟前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
nuclear20111 小时前
使用Python 在Excel中创建和取消数据分组 - 详解
python·excel数据分组·创建excel分组·excel分类汇总·excel嵌套分组·excel大纲级别·取消excel分组
Lucky小小吴2 小时前
有关django、python版本、sqlite3版本冲突问题
python·django·sqlite
GIS 数据栈2 小时前
每日一书 《基于ArcGIS的Python编程秘笈》
开发语言·python·arcgis
爱分享的码瑞哥2 小时前
Python爬虫中的IP封禁问题及其解决方案
爬虫·python·tcp/ip
lindsayshuo2 小时前
jetson orin系列开发版安装cuda的gpu版本的opencv
人工智能·opencv
Mr.Q2 小时前
OpenCV和Qt坐标系不一致问题
qt·opencv
傻啦嘿哟3 小时前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人3 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
GOTXX4 小时前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络