Tensorflow 2.0 常见函数用法(一)

文章目录

  • [0. 基础用法](#0. 基础用法)
  • [1. tf.cast](#1. tf.cast)
  • [2. tf.keras.layers.Dense](#2. tf.keras.layers.Dense)
  • [3. tf.variable_scope](#3. tf.variable_scope)
  • [4. tf.squeeze](#4. tf.squeeze)
  • [5. tf.math.multiply](#5. tf.math.multiply)

0. 基础用法

Tensorflow 的用法不定期更新遇到的一些用法,之前已经包含了基础用法参考这里 ,具体包含如下图的方法:

本文介绍其他常见的方法。

1. tf.cast

张量类型强制转换

官方用法:

python 复制代码
tf.cast(
    x, dtype, name=None
)

示例:

python 复制代码
x = tf.constant([1.8, 2.2], dtype=tf.float32)
print(tf.cast(x, tf.int32))

# 输出
tf.Tensor([1 2], shape=(2,), dtype=int32)

2. tf.keras.layers.Dense

构建一个全连接层

在1.0中是 tf.layers.dense ,2.0中可以用下面方法兼容:

python 复制代码
import tensorflow.compat.v1 as tf
tf.layers.dense(xxx)

官方用法:

python 复制代码
tf.keras.layers.Dense(
    units,
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs
)

3. tf.variable_scope

这是 v1 版本的用法,用于管理变量

官方用法:

python 复制代码
tf.compat.v1.variable_scope(
    name_or_scope,
    default_name=None,
    values=None,
    initializer=None,
    regularizer=None,
    caching_device=None,
    partitioner=None,
    custom_getter=None,
    reuse=None,
    dtype=None,
    use_resource=None,
    constraint=None,
    auxiliary_name_scope=True
)

示例:

python 复制代码
import tensorflow as tf
with tf.variable_scope("one"):
    o=tf.get_variable("f",[1])
with tf.variable_scope("two"):
    o1=tf.get_variable("f",[1])

# 抛错,因为变量的作用范围不一样
# 一个作用域是one/f,一个作用域是two/f
assert o == o1

4. tf.squeeze

从张量的形状中移除大小为1的维度。该函数返回一个张量,这个张量是将原始input中所有维度为1的那些维都删掉的结果。

axis 可以用来指定要删掉的为1的维度,此处要注意指定的维度必须确保其是1,否则会报错。

官方用法:

python 复制代码
tf.squeeze(
    input, axis=None, name=None
)

示例:

python 复制代码
# 注意,a的shape是1*6,即存在一个大小为1的维度
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[1, 6])
print(a)
b = tf.squeeze(a, [0]) # 删除第0个维度为1的
# b = tf.squeeze(a) 的结果是一样的
print(b)

# 输出
tf.Tensor([[1 2 3 4 5 6]], shape=(1, 6), dtype=int32)
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)
python 复制代码
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[6, 1])
print(a)
b = tf.squeeze(a, [1])
print(b)

# 输出
tf.Tensor(
[[1]
 [2]
 [3]
 [4]
 [5]
 [6]], shape=(6, 1), dtype=int32)
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)
python 复制代码
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
print(a)
b = tf.squeeze(a) # 如果不存在大小为1的维度,那么保持不变
print(b)

# 输出
tf.Tensor(
[[1 2 3]
 [4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(
[[1 2 3]
 [4 5 6]], shape=(2, 3), dtype=int32)

5. tf.math.multiply

元素相乘

在 1.0 中是 tf.multiply
官方用法:

python 复制代码
tf.math.multiply(
    x, y, name=None
)

示例:

python 复制代码
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
print(tf.multiply(a, 2))
print(tf.multiply(a, a))

# 输出
tf.Tensor(
[[ 2  4  6]
 [ 8 10 12]], shape=(2, 3), dtype=int32)

tf.Tensor(
[[ 1  4  9]
 [16 25 36]], shape=(2, 3), dtype=int32)
python 复制代码
x = tf.ones([1, 2]);
y = tf.ones([2, 1]);
print(x * y)  # Taking advantage of operator overriding
print(tf.multiply(x, y))

# 输出,如果维度不一致,会尝试匹配维度
tf.Tensor(
[[1. 1.]
 [1. 1.]], shape=(2, 2), dtype=float32)
tf.Tensor(
[[1. 1.]
 [1. 1.]], shape=(2, 2), dtype=float32)
相关推荐
吃茄子的猫18 分钟前
quecpython中&的具体含义和使用场景
开发语言·python
珠海西格电力23 分钟前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃29 分钟前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方42 分钟前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
启途AI44 分钟前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_11 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
APIshop1 小时前
Python 爬虫获取 item_get_web —— 淘宝商品 SKU、详情图、券后价全流程解析
前端·爬虫·python
楚来客1 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨1 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦1 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae