RK3588 rknpu2及rknn-toolkit2使用说明

RKNN模型推理共有四种方式:

第一种是借助RKNN-Toolkit2的功能在模拟NPU上运行RKNN模型并获取推理结果(在PC端)

第二种是借助RKNN-Toolkit2的功能, 将板子与PC连接,将RKNN模型分发到指定的NPU设备进行推理并获取推理结果(网络推理在板端,脚本写在PC端)

第三种是调用RKNN SDK的C语言API进行测试代码编写,并使用交叉编译器进行编译,将得到的可执行文件拷贝到板子上运行(开发编译在PC端,运行在板端)2024.3.7已验证

第四种是在板端安装rknn-toolkit2-lite工具,使用python脚本在板端推理(代码开发运行都在板端)

安装conda:

下载wget https://mirrors.bfsu.edu.cn/anaconda/archive/Anaconda3-2022.10-Linux-x86_64.sh --no-check-certificate

执行bash Anaconda3-2022.10-Linux-x86_64.sh

关闭自动进入conda,去除终端命令前(base):conda config --show | grep auto_activate_base; conda config --set auto_activate_base False(True)

PC上运行RKNN-Toolkit2(ubuntu20.04的python版本是3.8)

启动环境变量source ~/.bashrc

升级 conda update -n base -c defaults conda

新建并激活python3.6环境conda create -n rknnkit python=3.6; conda activate rknnkit(查看:conda info --envs 删除:conda remove -n rknnkit --all 关闭环境:conda deactivate)

cd rknn-toolkit2

pip install -r ./doc/requirements_cp36-1.4.0.txt

pip install torch==1.10.1 torchvision==0.11.2 -i https://pypi.tuna.tsinghua.edu.cn/simple(上一步会报错,切换源安装,后再重新执行上一步)

pip install ./packages/rknn_toolkit2-1.4.0_22dcfef4-cp36-cp36m-linux_x86_64.whl

判断是否安装成功:python; from rknn.api import RKNN

模型转换并推理:cd examples/onnx/yolov5;python test.py

开发板上运行rknn-toolkit-lite(ubuntu20.04的python版本是3.8)

bash Miniconda3-latest-Linux-aarch64.sh

conda create -n rknnlite python=3.9

conda activate rknnlite

cd rknn-toolkit2-1.3.0/rknn_toolkit_lite2/packages

pip install rknn_toolkit_lite2-1.3.0-cp39-cp39-linux_aarch64.whl

判断是否安装成功:python; from rknnlite.api import RKNNLite

推理:cd rknn-toolkit2-1.3.0/rknn_toolkit_lite2/examples/inference_with_lite;python test.py

相关推荐
~kiss~5 分钟前
RAG - 高阶检索范式-step-by-step prompting -分步提示
ai
檀越剑指大厂14 分钟前
【Linux系列】Linux中的复制与迁移
linux·运维·服务器
Eric.Lee202115 分钟前
mujoco读取模型几何体属性
python·物理引擎·mujoco·物理仿真·构建物理几何体
杨晓风-linda19 分钟前
工作流基础知识
人工智能·ai·工作流·n8n
子午19 分钟前
【车辆车型识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Keine Zeit19 分钟前
虚拟机Linux(Ubuntu)忘记登录密码
linux·运维·ubuntu
阿杰学AI20 分钟前
AI核心知识40——大语言模型之Token(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·token
独行soc24 分钟前
2025年渗透测试面试题总结-273(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
独行soc25 分钟前
2025年渗透测试面试题总结-274(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
石像鬼₧魂石27 分钟前
Ubuntu 渗透测试步骤
linux·运维·ubuntu