RK3588 rknpu2及rknn-toolkit2使用说明

RKNN模型推理共有四种方式:

第一种是借助RKNN-Toolkit2的功能在模拟NPU上运行RKNN模型并获取推理结果(在PC端)

第二种是借助RKNN-Toolkit2的功能, 将板子与PC连接,将RKNN模型分发到指定的NPU设备进行推理并获取推理结果(网络推理在板端,脚本写在PC端)

第三种是调用RKNN SDK的C语言API进行测试代码编写,并使用交叉编译器进行编译,将得到的可执行文件拷贝到板子上运行(开发编译在PC端,运行在板端)2024.3.7已验证

第四种是在板端安装rknn-toolkit2-lite工具,使用python脚本在板端推理(代码开发运行都在板端)

安装conda:

下载wget https://mirrors.bfsu.edu.cn/anaconda/archive/Anaconda3-2022.10-Linux-x86_64.sh --no-check-certificate

执行bash Anaconda3-2022.10-Linux-x86_64.sh

关闭自动进入conda,去除终端命令前(base):conda config --show | grep auto_activate_base; conda config --set auto_activate_base False(True)

PC上运行RKNN-Toolkit2(ubuntu20.04的python版本是3.8)

启动环境变量source ~/.bashrc

升级 conda update -n base -c defaults conda

新建并激活python3.6环境conda create -n rknnkit python=3.6; conda activate rknnkit(查看:conda info --envs 删除:conda remove -n rknnkit --all 关闭环境:conda deactivate)

cd rknn-toolkit2

pip install -r ./doc/requirements_cp36-1.4.0.txt

pip install torch==1.10.1 torchvision==0.11.2 -i https://pypi.tuna.tsinghua.edu.cn/simple(上一步会报错,切换源安装,后再重新执行上一步)

pip install ./packages/rknn_toolkit2-1.4.0_22dcfef4-cp36-cp36m-linux_x86_64.whl

判断是否安装成功:python; from rknn.api import RKNN

模型转换并推理:cd examples/onnx/yolov5;python test.py

开发板上运行rknn-toolkit-lite(ubuntu20.04的python版本是3.8)

bash Miniconda3-latest-Linux-aarch64.sh

conda create -n rknnlite python=3.9

conda activate rknnlite

cd rknn-toolkit2-1.3.0/rknn_toolkit_lite2/packages

pip install rknn_toolkit_lite2-1.3.0-cp39-cp39-linux_aarch64.whl

判断是否安装成功:python; from rknnlite.api import RKNNLite

推理:cd rknn-toolkit2-1.3.0/rknn_toolkit_lite2/examples/inference_with_lite;python test.py

相关推荐
HuaYi_Sir10 分钟前
i.MX6ULL移植uboot Linux buildroot(二)
linux·运维·服务器
曲幽12 分钟前
从安装到上线:一份 Nginx 实战指南,让你的 Web 应用稳建安全
python·nginx·flask·fastapi·web·gunicorn·uvicorn
vibag22 分钟前
LangSmith监控
人工智能·python·语言模型·langchain·大模型
YJlio43 分钟前
PsPing 学习笔记(14.7):一条龙网络体检脚本——连通性、延迟、带宽全都要
开发语言·网络·笔记·python·学习·pdf·php
小鹏linux1 小时前
【像素贪吃蛇小游戏】部署文档-linux篇
linux·运维·服务器
2401_841495641 小时前
【DeepSeek系列】论文《mHC: Manifold-Constrained Hyper-Connections》全流程复现详解(附Python代码)
人工智能·pytorch·python·深度学习·论文复现·deepseek·mhc模型
汤姆yu1 小时前
基于python大数据的地震数据可视化分析系统
大数据·python·信息可视化
阿蔹1 小时前
Python-基础语法五-数据可视化、对象、类、多态、继承、封装、抽象类
开发语言·python
小白学大数据1 小时前
未来趋势:AI 时代下 python 爬虫技术的发展方向
运维·人工智能·爬虫·python·自动化
dagouaofei1 小时前
2026 年年度工作计划 PPT:AI 自动生成方案横向对比
人工智能·python·powerpoint