无服务器推理在大语言模型中的未来

服务器无服务器推理的未来:大型语言模型

摘要

随着大型语言模型(LLM)如GPT-4和PaLM的进步,自然语言任务的能力得到了显著提升。LLM被广泛应用于聊天机器人、搜索引擎和编程助手等场景。然而,由于LLM对GPU和内存的巨大需求,其在规模上的服务仍然具有挑战性。本文介绍了模型压缩技术和选择性执行等克服这一挑战的方法,并重点讨论了无服务器推理系统,如Amazon SageMaker和Microsoft Azure ML,它们通过在共享GPU集群上动态分配LLM来提高效率并降低成本。然而,现有的无服务器LLM系统存在高延迟问题,影响了交互式应用的体验。MIT CSAIL的研究人员提出了ServerlessLLM,这是一个创新的系统,通过利用多级服务器存储的丰富但未充分利用的容量和带宽,实现了LLM的无服务器低延迟推理。ServerlessLLM通过快速检查点加载、基于令牌的迁移和延迟优化的服务器分配等创新设计,显著减少了LLM的加载时间和端到端启动时间。实验结果表明,与现有系统相比,ServerlessLLM可以将LLM的加载时间减少4-8倍,端到端启动时间减少25倍以上。ServerlessLLM为无服务器架构的未来设计提供了启示,并为LLM的实际应用部署解锁了潜力。

关键词

大型语言模型,无服务器推理,模型压缩,选择性执行,ServerlessLLM,低延迟,多级加载,实时迁移,延迟优化调度

1. 引言

近年来,大型语言模型(LLM)如GPT-4和PaLM在自然语言任务中取得了显著的进步,被广泛应用于聊天机器人、搜索引擎和编程助手等场景。然而,由于LLM对GPU和内存的巨大需求,其在规模上的服务仍然具有挑战性。本文介绍了模型压缩技术和选择性执行等克服这一挑战的方法,并重点讨论了无服务器推理系统,如Amazon SageMaker和Microsoft Azure ML,它们通过在共享GPU集群上动态分配LLM来提高效率并降低成本。然而,现有的无服务器LLM系统存在高延迟问题,影响了交互式应用的体验。MIT CSAIL的研究人员提出了ServerlessLLM,这是一个创新的系统,通过利用多级服务器存储的丰富但未充分利用的容量和带宽,实现了LLM的无服务器低延迟推理。ServerlessLLM通过快速检查点加载、基于令牌的迁移和延迟优化的服务器分配等创新设计,显著减少了LLM的加载时间和端到端启动时间。实验结果表明,与现有系统相比,ServerlessLLM可以将LLM的加载时间减少4-8倍,端到端启动时间减少25倍以上。ServerlessLLM为无服务器架构的未来设计提供了启示,并为LLM的实际应用部署解锁了潜力。

2. 无服务器LLM系统概述

无服务器LLM系统通过在共享GPU集群上动态分配LLM来提高效率并降低成本。然而,现有的无服务器LLM系统存在高延迟问题,影响了交互式应用的体验。MIT CSAIL的研究人员提出了ServerlessLLM,这是一个创新的系统,通过利用多级服务器存储的丰富但未充分利用的容量和带宽,实现了LLM的无服务器低延迟推理。

3. ServerlessLLM的关键创新

ServerlessLLM通过快速检查点加载、基于令牌的迁移和延迟优化的服务器分配等创新设计,显著减少了LLM的加载时间和端到端启动时间。

3.1 快速检查点加载

ServerlessLLM引入了加载优化的检查点格式和多级检查点加载流水线,以充分利用网络、SSD、DRAM和GPU内存之间的带宽。

3.2 基于令牌的迁移

ServerlessLLM通过只迁移必要的提示令牌而不是快照整个模型状态,显著减少了迁移时间。

3.3 延迟优化的服务器分配

ServerlessLLM使用精确的模型来估计每个服务器的检查点加载时间和迁移时间,并选择最小化预期启动延迟的服务器。

4. ServerlessLLM的性能评估

实验结果表明,与现有系统相比,ServerlessLLM可以将LLM的加载时间减少4-8倍,端到端启动时间减少25倍以上。

5. 未来挑战

ServerlessLLM代表了优化无服务器LLM推理的第一步,但仍有许多问题需要解决,包括预测实时模型需求、智能放置检查点、扩展调度算法、确保资源分配的公平性等。

6. 结论

ServerlessLLM展示了无服务器架构在AI工作负载方面的巨大创新潜力。随着LLM的规模和流行度不断增长,像ServerlessLLM这样的解决方案将变得越来越重要。系统与机器学习的结合可以引入新的范式,以安全可持续的方式服务、共享和扩展AI模型。

相关推荐
丈剑走天涯14 小时前
k8s etcd服务安装维护
云原生·etcd·devops·1024程序员节
青0721松15 小时前
千云低代码平台ETMS-k8s实施部署
低代码·云原生·容器
梵得儿SHI15 小时前
大型语言模型基础之 Prompt Engineering:打造稳定输出 JSON 格式的天气预报 Prompt
人工智能·语言模型·prompt·提示词工程·结构化输出·engineering·ai交互
睡不醒的猪儿17 小时前
k8s部署自动化工具jenkins
云原生·kubernetes·自动化·jenkins
秋千码途19 小时前
在K8S中部署MySQL主从
mysql·云原生·容器·kubernetes
DisonTangor21 小时前
【2B篇】阿里通义 Qwen3-VL 新增 2B、32B 两个模型尺寸,手机也能轻松运行
人工智能·计算机视觉·语言模型·开源·aigc
回忆是昨天里的海21 小时前
k8s部署容器化应用-tomcat
云原生·容器·kubernetes·1024程序员节
Coovally AI模型快速验证1 天前
突破性开源模型DepthLM问世:视觉语言模型首次实现精准三维空间理解
人工智能·语言模型·自然语言处理·ocr·音视频·ai编程
Jy_06221 天前
K8s中,deployment 是如何从 yaml 文件最终部署成功 pod 的
云原生·容器·kubernetes