python数据分析和可视化【3】体检数据分析和小费数据分析

文章目录


体检数据分析

要求:

(1)读取testdata文件,利用agg函数统计数据中'淋巴细胞计数'的和与均值、'白细胞计数'的和与均值。

(2)统计不同性别人群的血小板计数

(3)同时输出淋巴细胞计数的均值、血小板计数的均值与标准差。

数据集:

代码:

python 复制代码
import pandas as pd

# 读取Excel文件
df = pd.read_excel('C:\\Users\86178\Downloads\\testdata.xls')

# 统计'淋巴细胞计数'的和与均值
lymphocyte_agg = df['淋巴细胞计数'].agg(['sum', 'mean'])

# 统计'白细胞计数'的和与均值
leukocyte_agg = df['白细胞计数'].agg(['sum', 'mean'])

# 统计不同性别人群的血小板计数
platelet_by_gender = df.groupby('性别')['血小板计数'].sum()

# 输出淋巴细胞计数的均值、血小板计数的均值与标准差
lymphocyte_mean = df['淋巴细胞计数'].mean()
platelet_mean = df['血小板计数'].mean()
platelet_std = df['血小板计数'].std()

print("淋巴细胞计数的和与均值:")
print(lymphocyte_agg)
print("白细胞计数的和与均值:")
print(leukocyte_agg)
print("不同性别人群的血小板计数:")
print(platelet_by_gender)
print("淋巴细胞计数的均值:", lymphocyte_mean)
print("血小板计数的均值:", platelet_mean)
print("血小板计数的标准差:", platelet_std)

运行结果:

小费数据分析

要求:

(1)读取数据,并查看数据的描述信息。

(2)将列名修改为汉字,并显示前5行数据。

(3)分析男性顾客与女性顾客谁更慷慨。(将数据按照性别进行分组,查看分组后小费的情况)

(4)分析日期与小费之间的关系。(将数据按照星期分类,查看分类后的小费情况)

性别+抽烟的组合因素对慷慨度的影响。(将数据按照性别和是否抽烟进行分组,查看分组后小费的情况)

数据集:

代码:

python 复制代码
import pandas as pd

# 1. 读取xls数据并查看描述信息
data = pd.read_excel('C:\\Users\86178\Downloads\\tips.xls')
print(data.describe())

# 2. 将列名修改为汉字并显示前5行数据
data.columns = ['总消费', '小费', '性别', '是否吸烟', '日期', '用餐时间', '大小']
print(data.head())

# 3. 分析男性顾客与女性顾客谁更慷慨
generosity_by_gender = data.groupby('性别')['小费'].mean()
print(generosity_by_gender)

# 4. 分析日期与小费之间的关系
tip_by_day = data.groupby('日期')['小费'].mean()
print(tip_by_day)

# 5. 性别+抽烟的组合因素对慷慨度的影响
generosity_by_gender_smoker = data.groupby(['性别', '是否吸烟'])['小费'].mean()
print(generosity_by_gender_smoker)

运行结果:

相关推荐
数智顾问7 分钟前
【73页PPT】美的简单高效的管理逻辑(附下载方式)
大数据·人工智能·产品运营
love530love10 分钟前
【保姆级教程】阿里 Wan2.1-T2V-14B 模型本地部署全流程:从环境配置到视频生成(附避坑指南)
人工智能·windows·python·开源·大模型·github·音视频
和科比合砍81分23 分钟前
ES模块(ESM)、CommonJS(CJS)和UMD三种格式
大数据·elasticsearch·搜索引擎
He19550141 分钟前
Go初级之十:错误处理与程序健壮性
开发语言·python·golang
和鲸社区1 小时前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
瓦哥架构实战1 小时前
从 Prompt 到 Context:LLM OS 时代的核心工程范式演进
大数据
豌豆花下猫2 小时前
Python 潮流周刊#118:Python 异步为何不够流行?(摘要)
后端·python·ai
weixin_lynhgworld2 小时前
盲盒抽卡机小程序系统开发:以技术创新驱动娱乐体验升级
大数据·盲盒·抽谷机
THMAIL2 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
wheeldown2 小时前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11