python数据分析和可视化【3】体检数据分析和小费数据分析

文章目录


体检数据分析

要求:

(1)读取testdata文件,利用agg函数统计数据中'淋巴细胞计数'的和与均值、'白细胞计数'的和与均值。

(2)统计不同性别人群的血小板计数

(3)同时输出淋巴细胞计数的均值、血小板计数的均值与标准差。

数据集:

代码:

python 复制代码
import pandas as pd

# 读取Excel文件
df = pd.read_excel('C:\\Users\86178\Downloads\\testdata.xls')

# 统计'淋巴细胞计数'的和与均值
lymphocyte_agg = df['淋巴细胞计数'].agg(['sum', 'mean'])

# 统计'白细胞计数'的和与均值
leukocyte_agg = df['白细胞计数'].agg(['sum', 'mean'])

# 统计不同性别人群的血小板计数
platelet_by_gender = df.groupby('性别')['血小板计数'].sum()

# 输出淋巴细胞计数的均值、血小板计数的均值与标准差
lymphocyte_mean = df['淋巴细胞计数'].mean()
platelet_mean = df['血小板计数'].mean()
platelet_std = df['血小板计数'].std()

print("淋巴细胞计数的和与均值:")
print(lymphocyte_agg)
print("白细胞计数的和与均值:")
print(leukocyte_agg)
print("不同性别人群的血小板计数:")
print(platelet_by_gender)
print("淋巴细胞计数的均值:", lymphocyte_mean)
print("血小板计数的均值:", platelet_mean)
print("血小板计数的标准差:", platelet_std)

运行结果:

小费数据分析

要求:

(1)读取数据,并查看数据的描述信息。

(2)将列名修改为汉字,并显示前5行数据。

(3)分析男性顾客与女性顾客谁更慷慨。(将数据按照性别进行分组,查看分组后小费的情况)

(4)分析日期与小费之间的关系。(将数据按照星期分类,查看分类后的小费情况)

性别+抽烟的组合因素对慷慨度的影响。(将数据按照性别和是否抽烟进行分组,查看分组后小费的情况)

数据集:

代码:

python 复制代码
import pandas as pd

# 1. 读取xls数据并查看描述信息
data = pd.read_excel('C:\\Users\86178\Downloads\\tips.xls')
print(data.describe())

# 2. 将列名修改为汉字并显示前5行数据
data.columns = ['总消费', '小费', '性别', '是否吸烟', '日期', '用餐时间', '大小']
print(data.head())

# 3. 分析男性顾客与女性顾客谁更慷慨
generosity_by_gender = data.groupby('性别')['小费'].mean()
print(generosity_by_gender)

# 4. 分析日期与小费之间的关系
tip_by_day = data.groupby('日期')['小费'].mean()
print(tip_by_day)

# 5. 性别+抽烟的组合因素对慷慨度的影响
generosity_by_gender_smoker = data.groupby(['性别', '是否吸烟'])['小费'].mean()
print(generosity_by_gender_smoker)

运行结果:

相关推荐
一晌小贪欢13 分钟前
Python 测试利器:使用 pytest 高效编写和管理单元测试
python·单元测试·pytest·python3·python测试
小文数模13 分钟前
2026年美赛数学建模C题完整参考论文(含模型和代码)
python·数学建模·matlab
Halo_tjn21 分钟前
基于封装的专项 知识点
java·前端·python·算法
Hgfdsaqwr43 分钟前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
weixin_395448911 小时前
export_onnx.py_0130
pytorch·python·深度学习
s1hiyu1 小时前
使用Scrapy框架构建分布式爬虫
jvm·数据库·python
2301_763472461 小时前
使用Seaborn绘制统计图形:更美更简单
jvm·数据库·python
珠海西格1 小时前
“主动预防” vs “事后补救”:分布式光伏防逆流技术的代际革命,西格电力给出标准答案
大数据·运维·服务器·分布式·云计算·能源
无垠的广袤1 小时前
【VisionFive 2 Lite 单板计算机】边缘AI视觉应用部署:缺陷检测
linux·人工智能·python·opencv·开发板
Duang007_1 小时前
【LeetCodeHot100 超详细Agent启发版本】字母异位词分组 (Group Anagrams)
开发语言·javascript·人工智能·python