InstructGPT的流程介绍

1. Step1:SFT,Supervised

Fine-Tuning,有监督微调。顾名思义,它是在有监督(有标注)数据上微调训练得到的。这里的监督数据其实就是输入Prompt,输出相应的回复,只不过这里的回复是人工编写的。这个工作要求比一般标注要高,其实算是一种创作了。
2. Step2:RM,Reward

Model,奖励模型。具体来说,一个Prompt丢给前一步的SFT,输出若干个(4-9个)回复,由标注人员对这些回复进行排序。然后从4-9个中每次取2个,因为是有序的,就可以用来训练这个奖励模型,让模型学习到这个好坏评价。这一步非常关键,它就是所谓的Human

Feedback,引导下一步模型的进化方向。
3. Step3:RL,Reinforcement Learning,强化学习,使用PPO策略进行训练。

PPO,Proximal Policy Optimization,近端策略优化,是一种强化学习优化方法,它背后的主要思想是避免每次太大的更新,提高训练的稳定性。具体过程如下:首先需要初始化一个语言模型,然后丢给它一个Prompt,它生成一个回复,上一步的RM给这个回复一个打分,这个打分回传给模型更新参数。这里的这个模型在强化学习视角下就是一个策略。这一步有个很重要的动作,就是更新模型时会考虑模型每一个Token的输出和第一步SFT输出之间的差异性,要让它俩尽量相似。这是为了缓解强化学习可能的过度优化。

LLM的输出怎么评价:

三大原则:有帮助(helpful)、真实性(truthfulness)和无害性(harmlessness)

对大部分任务,无害和真实比有帮助更加重要。

对于边界 Case 的指导原则是:你更愿意从试图帮助你完成此任务的客户助理那里收到哪种输出?这是一种设身处地的原则,把自己假想为任务提出者,然后问自己期望得到哪种输出。

参考:
https://yam.gift/2023/02/19/NLP/2023-02-19-ChatGPT-Labeling/

相关推荐
该用户已不存在4 小时前
Mojo vs Python vs Rust: 2025年搞AI,该学哪个?
后端·python·rust
站大爷IP6 小时前
Java调用Python的5种实用方案:从简单到进阶的全场景解析
python
用户83562907805111 小时前
从手动编辑到代码生成:Python 助你高效创建 Word 文档
后端·python
c8i11 小时前
python中类的基本结构、特殊属性于MRO理解
python
liwulin050612 小时前
【ESP32-CAM】HELLO WORLD
python
Doris_202312 小时前
Python条件判断语句 if、elif 、else
前端·后端·python
Doris_202312 小时前
Python 模式匹配match case
前端·后端·python
这里有鱼汤13 小时前
Python量化实盘踩坑指南:分钟K线没处理好,小心直接亏钱!
后端·python·程序员
大模型真好玩13 小时前
深入浅出LangGraph AI Agent智能体开发教程(五)—LangGraph 数据分析助手智能体项目实战
人工智能·python·mcp
测试老哥13 小时前
Selenium 使用指南
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例