InstructGPT的流程介绍

1. Step1:SFT,Supervised

Fine-Tuning,有监督微调。顾名思义,它是在有监督(有标注)数据上微调训练得到的。这里的监督数据其实就是输入Prompt,输出相应的回复,只不过这里的回复是人工编写的。这个工作要求比一般标注要高,其实算是一种创作了。
2. Step2:RM,Reward

Model,奖励模型。具体来说,一个Prompt丢给前一步的SFT,输出若干个(4-9个)回复,由标注人员对这些回复进行排序。然后从4-9个中每次取2个,因为是有序的,就可以用来训练这个奖励模型,让模型学习到这个好坏评价。这一步非常关键,它就是所谓的Human

Feedback,引导下一步模型的进化方向。
3. Step3:RL,Reinforcement Learning,强化学习,使用PPO策略进行训练。

PPO,Proximal Policy Optimization,近端策略优化,是一种强化学习优化方法,它背后的主要思想是避免每次太大的更新,提高训练的稳定性。具体过程如下:首先需要初始化一个语言模型,然后丢给它一个Prompt,它生成一个回复,上一步的RM给这个回复一个打分,这个打分回传给模型更新参数。这里的这个模型在强化学习视角下就是一个策略。这一步有个很重要的动作,就是更新模型时会考虑模型每一个Token的输出和第一步SFT输出之间的差异性,要让它俩尽量相似。这是为了缓解强化学习可能的过度优化。

LLM的输出怎么评价:

三大原则:有帮助(helpful)、真实性(truthfulness)和无害性(harmlessness)

对大部分任务,无害和真实比有帮助更加重要。

对于边界 Case 的指导原则是:你更愿意从试图帮助你完成此任务的客户助理那里收到哪种输出?这是一种设身处地的原则,把自己假想为任务提出者,然后问自己期望得到哪种输出。

参考:
https://yam.gift/2023/02/19/NLP/2023-02-19-ChatGPT-Labeling/

相关推荐
用针戳左手中指指头1 小时前
AI小白搞AI之目标检测:王者荣耀画面识别
人工智能·python·yolo·目标检测·王者荣耀
大学生毕业题目1 小时前
毕业项目推荐:105-基于yolov8/yolov5/yolo11的烟草等级检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·烟草等级
旅途中的宽~1 小时前
【Python】pip install -v e .命令不想自动更新torch版本
开发语言·python·pip
海棠AI实验室2 小时前
第 3 篇:方案写作——SOW / 里程碑 / 验收标准 / 风险假设的标准模板
数据库·python
高洁012 小时前
AI智能体搭建(4)
python·深度学习·机器学习·transformer·知识图谱
IT=>小脑虎2 小时前
Python爬虫零基础学习知识点详解【基础版】
爬虫·python·学习
做萤石二次开发的哈哈3 小时前
萤石开放平台 萤石可编程设备 | 设备 Python SDK 使用说明
开发语言·网络·python·php·萤石云·萤石
知乎的哥廷根数学学派3 小时前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
HarmonLTS4 小时前
Python Socket网络通信详解
服务器·python·网络安全
郝学胜-神的一滴4 小时前
Python数据封装与私有属性:保护你的数据安全
linux·服务器·开发语言·python·程序人生