InstructGPT的流程介绍

1. Step1:SFT,Supervised

Fine-Tuning,有监督微调。顾名思义,它是在有监督(有标注)数据上微调训练得到的。这里的监督数据其实就是输入Prompt,输出相应的回复,只不过这里的回复是人工编写的。这个工作要求比一般标注要高,其实算是一种创作了。
2. Step2:RM,Reward

Model,奖励模型。具体来说,一个Prompt丢给前一步的SFT,输出若干个(4-9个)回复,由标注人员对这些回复进行排序。然后从4-9个中每次取2个,因为是有序的,就可以用来训练这个奖励模型,让模型学习到这个好坏评价。这一步非常关键,它就是所谓的Human

Feedback,引导下一步模型的进化方向。
3. Step3:RL,Reinforcement Learning,强化学习,使用PPO策略进行训练。

PPO,Proximal Policy Optimization,近端策略优化,是一种强化学习优化方法,它背后的主要思想是避免每次太大的更新,提高训练的稳定性。具体过程如下:首先需要初始化一个语言模型,然后丢给它一个Prompt,它生成一个回复,上一步的RM给这个回复一个打分,这个打分回传给模型更新参数。这里的这个模型在强化学习视角下就是一个策略。这一步有个很重要的动作,就是更新模型时会考虑模型每一个Token的输出和第一步SFT输出之间的差异性,要让它俩尽量相似。这是为了缓解强化学习可能的过度优化。

LLM的输出怎么评价:

三大原则:有帮助(helpful)、真实性(truthfulness)和无害性(harmlessness)

对大部分任务,无害和真实比有帮助更加重要。

对于边界 Case 的指导原则是:你更愿意从试图帮助你完成此任务的客户助理那里收到哪种输出?这是一种设身处地的原则,把自己假想为任务提出者,然后问自己期望得到哪种输出。

参考:
https://yam.gift/2023/02/19/NLP/2023-02-19-ChatGPT-Labeling/

相关推荐
Allen_LVyingbo27 分钟前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗
智能砖头35 分钟前
LangChain 与 LlamaIndex 深度对比与选型指南
人工智能·python
风逸hhh2 小时前
python打卡day58@浙大疏锦行
开发语言·python
烛阴3 小时前
一文搞懂 Python 闭包:让你的代码瞬间“高级”起来!
前端·python
JosieBook3 小时前
【Java编程动手学】Java中的数组与集合
java·开发语言·python
Gyoku Mint4 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
郭庆汝10 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
思则变13 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
漫谈网络13 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
try2find15 小时前
安装llama-cpp-python踩坑记
开发语言·python·llama