InstructGPT的流程介绍

1. Step1:SFT,Supervised

Fine-Tuning,有监督微调。顾名思义,它是在有监督(有标注)数据上微调训练得到的。这里的监督数据其实就是输入Prompt,输出相应的回复,只不过这里的回复是人工编写的。这个工作要求比一般标注要高,其实算是一种创作了。
2. Step2:RM,Reward

Model,奖励模型。具体来说,一个Prompt丢给前一步的SFT,输出若干个(4-9个)回复,由标注人员对这些回复进行排序。然后从4-9个中每次取2个,因为是有序的,就可以用来训练这个奖励模型,让模型学习到这个好坏评价。这一步非常关键,它就是所谓的Human

Feedback,引导下一步模型的进化方向。
3. Step3:RL,Reinforcement Learning,强化学习,使用PPO策略进行训练。

PPO,Proximal Policy Optimization,近端策略优化,是一种强化学习优化方法,它背后的主要思想是避免每次太大的更新,提高训练的稳定性。具体过程如下:首先需要初始化一个语言模型,然后丢给它一个Prompt,它生成一个回复,上一步的RM给这个回复一个打分,这个打分回传给模型更新参数。这里的这个模型在强化学习视角下就是一个策略。这一步有个很重要的动作,就是更新模型时会考虑模型每一个Token的输出和第一步SFT输出之间的差异性,要让它俩尽量相似。这是为了缓解强化学习可能的过度优化。

LLM的输出怎么评价:

三大原则:有帮助(helpful)、真实性(truthfulness)和无害性(harmlessness)

对大部分任务,无害和真实比有帮助更加重要。

对于边界 Case 的指导原则是:你更愿意从试图帮助你完成此任务的客户助理那里收到哪种输出?这是一种设身处地的原则,把自己假想为任务提出者,然后问自己期望得到哪种输出。

参考:
https://yam.gift/2023/02/19/NLP/2023-02-19-ChatGPT-Labeling/

相关推荐
PieroPc4 小时前
一个基于Python Streamlit sqlite3 的销售单管理系统,提供商品管理、客户管理、销售单管理及打印,和应收对账单等功能
python·oracle·sqlite·streamlit
月下倩影时4 小时前
视觉进阶篇—— PyTorch 安装
人工智能·pytorch·python
Valueyou245 小时前
论文阅读——CenterNet
论文阅读·python·opencv·目标检测·计算机视觉
孤狼warrior5 小时前
目前最新同花顺金融股市数据爬取 JS逆向+node.js补浏览器环境
javascript·爬虫·python·金融·node.js
蒋星熠5 小时前
全栈开发实战指南:从架构设计到部署运维
运维·c++·python·系统架构·node.js·devops·c5全栈
程序员爱钓鱼6 小时前
Python 编程实战 · 实用工具与库 — Flask 基础入门
后端·python·面试
程序员爱钓鱼6 小时前
Python编程实战 - Python实用工具与库 - 文件批量处理脚本
后端·python·面试
鹿衔`8 小时前
Flask入门
后端·python·flask
一晌小贪欢12 小时前
【Python数据分析】数据分析与可视化
开发语言·python·数据分析·数据可视化·数据清洗
dreams_dream15 小时前
Flask
后端·python·flask