Machine Vision Technology:Lecture10 Object Detection

Machine Vision Technology:Lecture10 Object Detection

    • [object detection and challenges](#object detection and challenges)
    • [Face Detection人脸检测](#Face Detection人脸检测)
    • [Sliding Window Face Detection with Viola-Jones 2001](#Sliding Window Face Detection with Viola-Jones 2001)
    • [Pedestrian Detection行人检测](#Pedestrian Detection行人检测)

计算机视觉(本科) 北京邮电大学 鲁鹏


  • Introduction of object detection
  • Face Detection
  • Pedestrian Detection

object detection and challenges



Object Detection Design challenges:

  • How to efficiently search for likely objects

    • Even simple models require searching hundreds of thousands of positions and scales.即使是简单的模型也需要搜索成千上万的位置和尺度。
  • Feature design and scoring 特征设计和评分

    • How should appearance be modeled?
    • What features correspond to the object?
  • How to deal with different viewpoints? 处理不同的视角差异

    • Often train different models for a few different viewpoints 经常为几个不同的视角训练不同的模型

Face Detection人脸检测

Challenges of face detection:

  • Sliding window = tens of thousands of location/scale evaluations

    • 一个百万像素的图像有大约 1 0 6 10^6 106 个像素,以及相当数量的候选人脸位置
  • Faces are rare: 0--10 per image 人脸罕见:每张图片0-10哥人脸

    • For computational efficiency, spend as little time as possible on the non-face windows. 为了提高计算效率,在非人脸窗口上花费尽可能少的时间。
    • For 1 Mpix, to avoid having a false positive in every image, our false positive rate has to be less than 1 0 − 6 10^{-6} 10−6 1Mpix,避免假阳性在每一个图像,我们的假阳性率必须小于 1 0 − 6 10^{-6} 10−6

Sliding Window Face Detection with Viola-Jones 2001

Viola-Jones使用了机器学习的boosting算法,下面是boosting算法介绍:

  • A simple algorithm for learning robust classifiers
  • Provides efficient algorithm for sparse visual feature selection
  • Easy to implement, not requires external optimization tools

1.找到正确率大于0.5的分类器 h i ( x ) h_i(x) hi(x)

2.把错误分类的权重放大

3.迭代1-2

通过几个分类器组合起来得到最终分类器。
h ( x ) = α 1 h 1 ( x ) + α 2 h 2 ( x ) + α 3 h 3 ( x ) + ⋯ h(x) = \alpha_1 h_1(x) + \alpha_2 h_2(x) + \alpha_3 h_3(x) + \cdots h(x)=α1h1(x)+α2h2(x)+α3h3(x)+⋯

其中 h ( x ) h(x) h(x) 是 Strong classifier 强分类器, h i ( x ) h_i(x) hi(x) 是Weak classifier, x x x 是 Features vector, α i \alpha_i αi 是 Weight。

每个弱分类器:
h j ( x ) = { 1 if f j ( x ) > θ j 0 otherwise h_j(x) = \left\{ \begin{array}{rcl} 1 & & \text{if} \quad {f_j(x) \gt \theta_j} \\ 0 & & \text{otherwise} \\ \end{array} \right. hj(x)={10iffj(x)>θjotherwise

其中 f j ( x ) f_j(x) fj(x) 是 value of rectangle feature, θ j \theta_j θj 是threshold。如下图所示。

所以最终的 strong classfier:
h ( x ) = { 1 ∑ t = 1 T α t h t ( x ) > 1 2 ∑ t = 1 T α t 0 otherwise h(x) = \left\{ \begin{array}{rcl} 1 & & {\sum\limits_{t = 1}^{T} \alpha_t h_t(x) \gt \frac{1}{2} \sum\limits_{t = 1}^{T} \alpha_t } \\ 0 & & \text{otherwise} \\ \end{array} \right. h(x)=⎩ ⎨ ⎧10t=1∑Tαtht(x)>21t=1∑Tαtotherwise


Viola & Jones algorithm :

  • A "paradigmatic" method for real‐time object detection 实时目标检测的"范例"方法
  • Training is slow, but detection is very fast
  • Key ideas:
    • Integral images for fast feature evaluation 用于快速特征评估的积分图像(积分图)。
    • Boosting for feature selection
    • Attentional cascade for fast rejection of non‐face windows 注意力级联快速拒绝非人脸窗口。也就是对非人脸窗口处理用时更少。

详情看论文,没听太明白。。。就积分图有点像二维联合分布函数的矩形公式。

Pedestrian Detection行人检测

Histograms of oriented gradients for human detection 2005

HoG Feature.

相关推荐
xiaohouzi1122332 天前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
小关会打代码2 天前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
天天进步20152 天前
用Python打造专业级老照片修复工具:让时光倒流的数字魔法
人工智能·计算机视觉
荼蘼2 天前
答题卡识别改分项目
人工智能·opencv·计算机视觉
IT古董2 天前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn
张子夜 iiii2 天前
4步OpenCV-----扫秒身份证号
人工智能·python·opencv·计算机视觉
paid槮2 天前
机器视觉之图像处理篇
图像处理·opencv·计算机视觉
通街市密人有3 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
sali-tec3 天前
C# 基于halcon的视觉工作流-章34-环状测量
开发语言·图像处理·算法·计算机视觉·c#
小王爱学人工智能3 天前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉