Machine Vision Technology:Lecture10 Object Detection

Machine Vision Technology:Lecture10 Object Detection

    • [object detection and challenges](#object detection and challenges)
    • [Face Detection人脸检测](#Face Detection人脸检测)
    • [Sliding Window Face Detection with Viola-Jones 2001](#Sliding Window Face Detection with Viola-Jones 2001)
    • [Pedestrian Detection行人检测](#Pedestrian Detection行人检测)

计算机视觉(本科) 北京邮电大学 鲁鹏


  • Introduction of object detection
  • Face Detection
  • Pedestrian Detection

object detection and challenges



Object Detection Design challenges:

  • How to efficiently search for likely objects

    • Even simple models require searching hundreds of thousands of positions and scales.即使是简单的模型也需要搜索成千上万的位置和尺度。
  • Feature design and scoring 特征设计和评分

    • How should appearance be modeled?
    • What features correspond to the object?
  • How to deal with different viewpoints? 处理不同的视角差异

    • Often train different models for a few different viewpoints 经常为几个不同的视角训练不同的模型

Face Detection人脸检测

Challenges of face detection:

  • Sliding window = tens of thousands of location/scale evaluations

    • 一个百万像素的图像有大约 1 0 6 10^6 106 个像素,以及相当数量的候选人脸位置
  • Faces are rare: 0--10 per image 人脸罕见:每张图片0-10哥人脸

    • For computational efficiency, spend as little time as possible on the non-face windows. 为了提高计算效率,在非人脸窗口上花费尽可能少的时间。
    • For 1 Mpix, to avoid having a false positive in every image, our false positive rate has to be less than 1 0 − 6 10^{-6} 10−6 1Mpix,避免假阳性在每一个图像,我们的假阳性率必须小于 1 0 − 6 10^{-6} 10−6

Sliding Window Face Detection with Viola-Jones 2001

Viola-Jones使用了机器学习的boosting算法,下面是boosting算法介绍:

  • A simple algorithm for learning robust classifiers
  • Provides efficient algorithm for sparse visual feature selection
  • Easy to implement, not requires external optimization tools

1.找到正确率大于0.5的分类器 h i ( x ) h_i(x) hi(x)

2.把错误分类的权重放大

3.迭代1-2

通过几个分类器组合起来得到最终分类器。
h ( x ) = α 1 h 1 ( x ) + α 2 h 2 ( x ) + α 3 h 3 ( x ) + ⋯ h(x) = \alpha_1 h_1(x) + \alpha_2 h_2(x) + \alpha_3 h_3(x) + \cdots h(x)=α1h1(x)+α2h2(x)+α3h3(x)+⋯

其中 h ( x ) h(x) h(x) 是 Strong classifier 强分类器, h i ( x ) h_i(x) hi(x) 是Weak classifier, x x x 是 Features vector, α i \alpha_i αi 是 Weight。

每个弱分类器:
h j ( x ) = { 1 if f j ( x ) > θ j 0 otherwise h_j(x) = \left\{ \begin{array}{rcl} 1 & & \text{if} \quad {f_j(x) \gt \theta_j} \\ 0 & & \text{otherwise} \\ \end{array} \right. hj(x)={10iffj(x)>θjotherwise

其中 f j ( x ) f_j(x) fj(x) 是 value of rectangle feature, θ j \theta_j θj 是threshold。如下图所示。

所以最终的 strong classfier:
h ( x ) = { 1 ∑ t = 1 T α t h t ( x ) > 1 2 ∑ t = 1 T α t 0 otherwise h(x) = \left\{ \begin{array}{rcl} 1 & & {\sum\limits_{t = 1}^{T} \alpha_t h_t(x) \gt \frac{1}{2} \sum\limits_{t = 1}^{T} \alpha_t } \\ 0 & & \text{otherwise} \\ \end{array} \right. h(x)=⎩ ⎨ ⎧10t=1∑Tαtht(x)>21t=1∑Tαtotherwise


Viola & Jones algorithm :

  • A "paradigmatic" method for real‐time object detection 实时目标检测的"范例"方法
  • Training is slow, but detection is very fast
  • Key ideas:
    • Integral images for fast feature evaluation 用于快速特征评估的积分图像(积分图)。
    • Boosting for feature selection
    • Attentional cascade for fast rejection of non‐face windows 注意力级联快速拒绝非人脸窗口。也就是对非人脸窗口处理用时更少。

详情看论文,没听太明白。。。就积分图有点像二维联合分布函数的矩形公式。

Pedestrian Detection行人检测

Histograms of oriented gradients for human detection 2005

HoG Feature.

相关推荐
qq_271581792 小时前
Ubuntu OpenCV C++ 获取Astra Pro摄像头图像
人工智能·opencv·计算机视觉
会笑的小熊4 小时前
论文阅读笔记——自注意力机制
深度学习·计算机视觉·自然语言处理
song150265372985 小时前
AI视觉检测设备 精准瑕疵尺寸外观检测机
人工智能·计算机视觉·视觉检测
song150265372985 小时前
橡胶塑胶件AI视觉检测 光学筛选机
人工智能·计算机视觉·视觉检测
深度学习lover5 小时前
<数据集>yolo螺丝螺母识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·螺丝螺母识别
格林威6 小时前
AOI设备在光伏制造领域的核心应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造
ShiMetaPi10 小时前
ShimetaPi丨事件相机新版SDK发布:支持Python调用,可降低使用门槛
深度学习·计算机视觉·事件相机·evs
「QT(C++)开发工程师」13 小时前
VTK开源视觉库 | 行业应用第一篇
linux·qt·物联网·计算机视觉·信息可视化·vtk
AI科技星15 小时前
基于空间螺旋运动假设的水星近日点进动理论推导与验证
数据结构·人工智能·经验分享·算法·计算机视觉
Mrliu__18 小时前
Opencv(五): 腐蚀和膨胀
人工智能·opencv·计算机视觉