PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection

​ECCV 2022

paper:[2205.07403] PillarNet: Real-Time and High-Performance Pillar-based 3D Object Detection

code:https://github.com/VISION-SJTU/PillarNet-LTS

纯点云基于pillar3D检测模型

网络比较

SECOND

  • 基于voxel,one-stage,基于sparse 3D conv

  • 将点云划分为3D voxel,在BEV空间识别box

  • 模型结构包括

    • encoder:编码非空3D voxel特征,生成多size3D特征

    • neck:将bev空间下的多尺度3D特征flatten,转换成多尺度(和多size区别?)特征;top-down

    • detect head:用多尺度bev特征做box分类回归

PointPillars

  • 用一个小PointNet将点云投射到xy平面,生成一个稀疏2D底图

  • 2Dconv(top-down)网络,对底图生成多尺度特征

  • detect head

分析

  • 基于pillar的网络性能瓶颈(资源性能?效果性能?)主要在于sparse encoder、neck模块

  • PointPillar直接在稠密的2d底图上 用特征金字塔网络 fuse多尺度特征

    • 缺少pillar特征编码

    • 把输出特征的size和初始pillar范围耦合了,造成所用计算资源随着pillar scale上涨

改进

  1. 将SECOND中的3d sparse conv替换成2d

  2. 用neck模块融合稀疏的空间特征、抽象高维语义特征

  3. 总结

    1. 学pillar 特征:较重的 sparse encoder

    2. 空间特征融合:较轻的neck

结构

encoder

  1. 输入:稀疏2d pillar特征

  2. stage1-4:2d conv,逐渐降采样pillar特征

    1. 可使用2d检测backbone:vgg,resnet,并且可提升3d效果

    2. 逐渐降采样,缓解了pillar size绑定的影响

neck

  1. 16倍下采样稠密特征

  2. 3种设计

    1. v1:SECOND设计

    2. v2:基于1多一条skip connection

    3. v3:基于2多一层conv

loss

  1. cls:focal loss

  2. iou:

    1. S:分类score

    2. W:3d iou score

      1. L1 loss

      2. β:超参

      3. iou计算:2 ∗ (W − 0.5) ∈ [−1, 1].

    3. 解耦朝向:xxIoU loss → OD-xxIoU

  1. size(3d box),off(位置偏移量),z(z方向位置),ori(朝向):L1 loss

相关推荐
Mintopia20 小时前
Claude Code CLI UI
人工智能·aigc·全栈
Mr.Winter`20 小时前
基于Proto3和单例模式的系统参数配置模块设计(附C++案例实现)
c++·人工智能·单例模式·机器人
Mintopia20 小时前
🌐 动态网络环境下的 WebAIGC 断点续传与容错技术
前端·人工智能·aigc
qinyia20 小时前
WisdomSSH解决因未使用Docker资源导致的磁盘空间不足问题
运维·服务器·人工智能·后端·docker·ssh·github
Stark-C20 小时前
凭实力出圈,头戴耳机的六边形战士!性价比拉满的iKF Mars实测
人工智能
CoovallyAIHub20 小时前
超越YOLOv8/v11!自研RKM-YOLO为输电线路巡检精度、速度双提升
深度学习·算法·计算机视觉
paperxie_xiexuo20 小时前
面向多场景演示需求的AI辅助生成工具体系研究:十类平台的功能分型、技术实现与合规应用分析
大数据·人工智能·powerpoint·ppt
aneasystone本尊20 小时前
学习 LiteLLM 的缓存系统
人工智能
CNRio21 小时前
人工智能基础架构与算力之2 异构算力合池技术:打破资源壁垒的分布式 AI 部署方案
人工智能·分布式
Zlssszls21 小时前
全运会展现科技魅力,数字孪生打造智慧场馆新标杆
人工智能·科技·数字孪生·智慧场馆·全运会