PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection

​ECCV 2022

paper:[2205.07403] PillarNet: Real-Time and High-Performance Pillar-based 3D Object Detection

code:https://github.com/VISION-SJTU/PillarNet-LTS

纯点云基于pillar3D检测模型

网络比较

SECOND

  • 基于voxel,one-stage,基于sparse 3D conv

  • 将点云划分为3D voxel,在BEV空间识别box

  • 模型结构包括

    • encoder:编码非空3D voxel特征,生成多size3D特征

    • neck:将bev空间下的多尺度3D特征flatten,转换成多尺度(和多size区别?)特征;top-down

    • detect head:用多尺度bev特征做box分类回归

PointPillars

  • 用一个小PointNet将点云投射到xy平面,生成一个稀疏2D底图

  • 2Dconv(top-down)网络,对底图生成多尺度特征

  • detect head

分析

  • 基于pillar的网络性能瓶颈(资源性能?效果性能?)主要在于sparse encoder、neck模块

  • PointPillar直接在稠密的2d底图上 用特征金字塔网络 fuse多尺度特征

    • 缺少pillar特征编码

    • 把输出特征的size和初始pillar范围耦合了,造成所用计算资源随着pillar scale上涨

改进

  1. 将SECOND中的3d sparse conv替换成2d

  2. 用neck模块融合稀疏的空间特征、抽象高维语义特征

  3. 总结

    1. 学pillar 特征:较重的 sparse encoder

    2. 空间特征融合:较轻的neck

结构

encoder

  1. 输入:稀疏2d pillar特征

  2. stage1-4:2d conv,逐渐降采样pillar特征

    1. 可使用2d检测backbone:vgg,resnet,并且可提升3d效果

    2. 逐渐降采样,缓解了pillar size绑定的影响

neck

  1. 16倍下采样稠密特征

  2. 3种设计

    1. v1:SECOND设计

    2. v2:基于1多一条skip connection

    3. v3:基于2多一层conv

loss

  1. cls:focal loss

  2. iou:

    1. S:分类score

    2. W:3d iou score

      1. L1 loss

      2. β:超参

      3. iou计算:2 ∗ (W − 0.5) ∈ [−1, 1].

    3. 解耦朝向:xxIoU loss → OD-xxIoU

  1. size(3d box),off(位置偏移量),z(z方向位置),ori(朝向):L1 loss

相关推荐
光羽隹衡2 分钟前
计算机视觉——Opencv(图像金字塔)
人工智能·opencv·计算机视觉
zhengfei6113 分钟前
人工智能驱动的暗网开源情报工具
人工智能·开源
余俊晖5 分钟前
多模态视觉语言模型:Molmo2训练数据、训练配方
人工智能·语言模型·自然语言处理
葫三生8 分钟前
存在之思:三生原理与现象学对话可能?
数据库·人工智能·神经网络·算法·区块链
UI设计兰亭妙微8 分钟前
UI 设计新范式:从国际案例看体验与商业的融合之道
人工智能·ui·b端设计
老蒋每日coding12 分钟前
AIGC领域多模态大模型的知识图谱构建:技术框架与实践路径
人工智能·aigc·知识图谱
布兰妮甜16 分钟前
Photoshop中通过图层混合模式实现图像元素透明度渐变过渡的完整指南
人工智能·ui·生活·photoshop·文化
AIGCmitutu17 分钟前
Photoshop抠图插件2026选择指南,Ps抠图插件哪个好用?
人工智能·ui·ai绘画·photoshop·ps
唐诺19 分钟前
深入了解AI
人工智能·ai
知秋一叶12327 分钟前
Miloco v0.1.6 :米家摄像头清晰度配置 + RTSP 音频传输
人工智能·音视频·智能家居