算法---动态规划练习-1(三步问题)

三步问题

  • [1. 题目解析](#1. 题目解析)
  • [2. 讲解算法原理](#2. 讲解算法原理)
  • [3. 编写代码](#3. 编写代码)

1. 题目解析

题目地址三步问题

2. 讲解算法原理


1. 定义一个常量MOD为10^9+7,用于取模运算。

2. 创建一个长度为n+3的数组dp,用于存储计算过程中的中间结果。数组的下标表示台阶的级数,数组元素存储对应级数时的上楼方式数。

3. 初始化数组的前三个元素dp[1]、dp[2]和dp[3]分别为1、2、4,这是台阶数为1、2、3时的上楼方式数。

4. 如果n小于等于3,直接返回dp[n],即台阶数为n时的上楼方式数。

5. 从i=4开始,通过循环填充数组dp的剩余元素。对于每个i,计算台阶数为i时的上楼方式数。根据题意,可以从前一级台阶跨一步上来、从前两级台阶跨两步上来,或者从前三级台阶跨三步上来。因此,dp[i] = (dp[i-3] + dp[i-2] + dp[i-1]) % MOD,其中% MOD是为了防止整数溢出。

6. 循环结束后,数组dp中的所有台阶数对应的上楼方式数都已计算得到

7. 返回dp[n],即n级台阶的上楼方式数。


3. 编写代码

cpp 复制代码
class Solution {
public:

    int waysToStep(int n) {
        
        const int MOD=1e9+7;
        vector<long long> dp(n+3);
        dp[1]=1,dp[2]=2,dp[3]=4;

        if(n<=3) return dp[n];
        for(int i=4;i<=n;i++)
        {
            dp[i]=(dp[i-3]+dp[i-2]+dp[i-1])%MOD;
        }
        return dp[n];
    }
};
相关推荐
じ☆冷颜〃4 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方4 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
POLITE34 小时前
Leetcode 23. 合并 K 个升序链表 (Day 12)
算法·leetcode·链表
fpcc5 小时前
C++编程实践——链式调用的实践
c++
楚来客5 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
Echo_NGC22375 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
会员果汁5 小时前
leetcode-动态规划-买卖股票
算法·leetcode·动态规划
橘颂TA6 小时前
【剑斩OFFER】算法的暴力美学——二进制求和
算法·leetcode·哈希算法·散列表·结构与算法
bkspiderx7 小时前
C++中的volatile:从原理到实践的全面解析
开发语言·c++·volatile