算法---动态规划练习-1(三步问题)

三步问题

  • [1. 题目解析](#1. 题目解析)
  • [2. 讲解算法原理](#2. 讲解算法原理)
  • [3. 编写代码](#3. 编写代码)

1. 题目解析

题目地址三步问题

2. 讲解算法原理


1. 定义一个常量MOD为10^9+7,用于取模运算。

2. 创建一个长度为n+3的数组dp,用于存储计算过程中的中间结果。数组的下标表示台阶的级数,数组元素存储对应级数时的上楼方式数。

3. 初始化数组的前三个元素dp[1]、dp[2]和dp[3]分别为1、2、4,这是台阶数为1、2、3时的上楼方式数。

4. 如果n小于等于3,直接返回dp[n],即台阶数为n时的上楼方式数。

5. 从i=4开始,通过循环填充数组dp的剩余元素。对于每个i,计算台阶数为i时的上楼方式数。根据题意,可以从前一级台阶跨一步上来、从前两级台阶跨两步上来,或者从前三级台阶跨三步上来。因此,dp[i] = (dp[i-3] + dp[i-2] + dp[i-1]) % MOD,其中% MOD是为了防止整数溢出。

6. 循环结束后,数组dp中的所有台阶数对应的上楼方式数都已计算得到

7. 返回dp[n],即n级台阶的上楼方式数。


3. 编写代码

cpp 复制代码
class Solution {
public:

    int waysToStep(int n) {
        
        const int MOD=1e9+7;
        vector<long long> dp(n+3);
        dp[1]=1,dp[2]=2,dp[3]=4;

        if(n<=3) return dp[n];
        for(int i=4;i<=n;i++)
        {
            dp[i]=(dp[i-3]+dp[i-2]+dp[i-1])%MOD;
        }
        return dp[n];
    }
};
相关推荐
fie88892 小时前
NSCT(非下采样轮廓波变换)的分解和重建程序
算法
晨晖23 小时前
单链表逆转,c语言
c语言·数据结构·算法
kk哥88993 小时前
C++ 对象 核心介绍
java·jvm·c++
helloworddm3 小时前
WinUI3 主线程不要执行耗时操作的原因
c++
无能者狂怒4 小时前
YOLO C++ Onnx Opencv项目配置指南
c++·opencv·yolo
im_AMBER4 小时前
Leetcode 78 识别数组中的最大异常值 | 镜像对之间最小绝对距离
笔记·学习·算法·leetcode
集智飞行4 小时前
c++函数传参的几种推荐方式
开发语言·c++
鼾声鼾语5 小时前
matlab的ros2发布的消息,局域网内其他设备收不到情况吗?但是matlab可以订阅其他局域网的ros2发布的消息(问题总结)
开发语言·人工智能·深度学习·算法·matlab·isaaclab
LYFlied5 小时前
【每日算法】LeetCode 25. K 个一组翻转链表
算法·leetcode·链表
Swizard5 小时前
别再迷信“准确率”了!一文读懂 AI 图像分割的黄金标尺 —— Dice 系数
python·算法·训练