代码+视频,R语言logistic回归交互项(交互作用)的可视化分析

交互作用效应(p for Interaction)在SCI文章中可以算是一个必杀技,几乎在高分的SCI中必出现,因为把人群分为亚组后再进行统计可以增强文章结果的可靠性,不仅如此,交互作用还可以使用来进行数据挖掘。在既往文章中,我们已经介绍了怎么使用R语言可视化visreg包对交互作用进行可视化分析(见下图)

使用visreg包后我们对图形的细节掌控力不够,今天我们视频介绍使用重新绘制手动图形,这在SCI论文中非常实用,几乎可以做出所有的交互可视化,也有利于我们了解制图原理。

R语言logistic回归交互项(交互作用)的可视化分析

代码:

r 复制代码
library(ggplot2)
#公众号:零基础说科研,公众号回复:不孕症,可以获得数据
bc<-read.csv("E:/r/test/buyunzheng.csv",sep=',',header=TRUE)
# 数据有8个指标,最后两个是PSM匹配结果,我们不用理他,其余六个为:
# Education:教育程度,age:年龄,parity产次,induced:人流次数,
# case:是否不孕,这是结局指标,spontaneous:自然流产次数。
names(bc)
bc$education<-ifelse(bc$education=="0-5yrs",0,ifelse(bc$education=="6-11yrs",1,2))
bc$spontaneous<-as.factor(bc$spontaneous)
bc$case<-as.factor(bc$case)
bc$induced<-as.factor(bc$induced)
bc$education<-as.factor(bc$education)

f1<- glm(case ~ age  + parity +spontaneous+age:spontaneous,
         family = binomial(link = logit), data = bc)
summary(f1)
#plogis(exp(newdata3$fit-(1.96*newdata3$se.fit)))
attach(bc)
newdata2<-data.frame(age,spontaneous,parity=mean(parity))
newdata3<-data.frame(newdata2,predict(f1,newdata = newdata2,type = "link",se =T))

newdata4<-within(newdata3,{
  pre<-plogis(fit)
  ll<-plogis(fit-(1.96*se.fit))
  ul<-plogis(fit+(1.96*se.fit))
})

plogis((newdata3$fit-(1.96*newdata3$se.fit)))

ggplot(newdata4,aes(x=age,y=pre))+geom_ribbon(aes(ymin=ll,ymax=ul,fill=spontaneous),alpha=0.2)+
  geom_line(aes(col=spontaneous),linewidth=1)
相关推荐
忆源30 分钟前
【Qt】之音视频编程1:QtAV的背景和安装篇
开发语言·qt·音视频
敲键盘的小夜猫33 分钟前
Python核心数据类型全解析:字符串、列表、元组、字典与集合
开发语言·python
李匠202436 分钟前
C++GO语言微服务之图片、短信验证码生成及存储
开发语言·c++·微服务·golang
巨龙之路4 小时前
C语言中的assert
c语言·开发语言
2301_776681655 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
熊大如如5 小时前
Java 反射
java·开发语言
沅_Yuan5 小时前
基于小波神经网络(WNN)的回归预测模型【MATLAB】
深度学习·神经网络·matlab·回归·小波神经网络·wnn
ll7788115 小时前
C++学习之路,从0到精通的征途:继承
开发语言·数据结构·c++·学习·算法
我不想当小卡拉米6 小时前
【Linux】操作系统入门:冯诺依曼体系结构
linux·开发语言·网络·c++
teacher伟大光荣且正确6 小时前
Qt Creator 配置 Android 编译环境
android·开发语言·qt