代码+视频,R语言logistic回归交互项(交互作用)的可视化分析

交互作用效应(p for Interaction)在SCI文章中可以算是一个必杀技,几乎在高分的SCI中必出现,因为把人群分为亚组后再进行统计可以增强文章结果的可靠性,不仅如此,交互作用还可以使用来进行数据挖掘。在既往文章中,我们已经介绍了怎么使用R语言可视化visreg包对交互作用进行可视化分析(见下图)

使用visreg包后我们对图形的细节掌控力不够,今天我们视频介绍使用重新绘制手动图形,这在SCI论文中非常实用,几乎可以做出所有的交互可视化,也有利于我们了解制图原理。

R语言logistic回归交互项(交互作用)的可视化分析

代码:

r 复制代码
library(ggplot2)
#公众号:零基础说科研,公众号回复:不孕症,可以获得数据
bc<-read.csv("E:/r/test/buyunzheng.csv",sep=',',header=TRUE)
# 数据有8个指标,最后两个是PSM匹配结果,我们不用理他,其余六个为:
# Education:教育程度,age:年龄,parity产次,induced:人流次数,
# case:是否不孕,这是结局指标,spontaneous:自然流产次数。
names(bc)
bc$education<-ifelse(bc$education=="0-5yrs",0,ifelse(bc$education=="6-11yrs",1,2))
bc$spontaneous<-as.factor(bc$spontaneous)
bc$case<-as.factor(bc$case)
bc$induced<-as.factor(bc$induced)
bc$education<-as.factor(bc$education)

f1<- glm(case ~ age  + parity +spontaneous+age:spontaneous,
         family = binomial(link = logit), data = bc)
summary(f1)
#plogis(exp(newdata3$fit-(1.96*newdata3$se.fit)))
attach(bc)
newdata2<-data.frame(age,spontaneous,parity=mean(parity))
newdata3<-data.frame(newdata2,predict(f1,newdata = newdata2,type = "link",se =T))

newdata4<-within(newdata3,{
  pre<-plogis(fit)
  ll<-plogis(fit-(1.96*se.fit))
  ul<-plogis(fit+(1.96*se.fit))
})

plogis((newdata3$fit-(1.96*newdata3$se.fit)))

ggplot(newdata4,aes(x=age,y=pre))+geom_ribbon(aes(ymin=ll,ymax=ul,fill=spontaneous),alpha=0.2)+
  geom_line(aes(col=spontaneous),linewidth=1)
相关推荐
中国胖子风清扬1 小时前
Rust 序列化技术全解析:从基础到实战
开发语言·c++·spring boot·vscode·后端·中间件·rust
我就是全世界1 小时前
【存储选型终极指南】RustFS vs MinIO:5大维度深度对决,95%技术团队的选择秘密!
开发语言·分布式·rust·存储
yudiandian20142 小时前
【QT 5.12.12 打包-Windows 平台下】
开发语言·qt
要记得喝水2 小时前
C#某公司面试题(含题目和解析)--1
开发语言·windows·面试·c#·.net
金融数据出海2 小时前
黄金金融期货数据API对接技术文档
开发语言·金融·github
诗书画唱2 小时前
【前端教程】JavaScript 实现图片鼠标悬停切换效果与==和=的区别
开发语言·前端·javascript
一枝小雨2 小时前
【C++】Vector完全指南:动态数组高效使用
开发语言·c++·笔记·vector·学习笔记·std库
诗书画唱2 小时前
【前端教程】JavaScript DOM 操作实战案例详解
开发语言·前端·javascript