【深度学习】pytorch,MNIST手写数字分类

efficientnet_b0的迁移学习

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
from torchvision import models
import matplotlib.pyplot as plt

# 定义超参数
batch_size = 240
learning_rate = 0.001
num_epochs = 10

# 数据预处理,包括调整图像大小并将单通道图像复制到三个通道
transform = transforms.Compose([
    transforms.Resize(224),  # 调整图像大小以适应EfficientNetB0
    transforms.Grayscale(num_output_channels=3),  # 将单通道图像复制到三个通道
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # 使用ImageNet的均值和标准差
])

# 加载数据集
train_dataset = MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = MNIST(root='./data', train=False, transform=transform, download=True)

# 创建数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=32)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, num_workers=32)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载预训练的EfficientNetB0模型并调整最后的分类层
model = models.efficientnet_b0(pretrained=True)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, 10)  # MNIST共10个类别
model.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 用于绘图的数据
train_losses = []
test_accuracies = []

# 训练模型
for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        data, target = data.to(device), target.to(device)
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        print(f"\rEpoch {epoch + 1}/{num_epochs}, Batch {batch_idx + 1}/{len(train_loader)}, Loss: {loss.item():.4f}")

    # 计算平均损失
    avg_loss = running_loss / len(train_loader)
    train_losses.append(avg_loss)

    # 测试准确率
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)  # Move test data to the correct device
            output = model(data)
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()

    accuracy = 100 * correct / total
    test_accuracies.append(accuracy)
    print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {avg_loss:.4f}, Test Accuracy: {accuracy:.2f}%')

# save
torch.save(model.state_dict(), 'mnist_efficientnetb0.pth')

# 绘制损失函数和准确率图
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_losses, label='Training Loss')
plt.title('Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(test_accuracies, label='Test Accuracy')
plt.title('Test Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()

plt.show()

训练10轮,测试准确率很猛:

Epoch 10/10, Loss: 0.0087, Test Accuracy: 99.60%

相关推荐
Sxiaocai1 分钟前
使用TensorFlow实现简化版 GoogLeNet 模型进行 MNIST 图像分类
分类·tensorflow·neo4j
极客代码7 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11337 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike8 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
YRr YRr1 小时前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类
HPC_fac130520678164 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
老艾的AI世界12 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
sp_fyf_202415 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
CoderIsArt15 小时前
基于 BP 神经网络整定的 PID 控制
人工智能·深度学习·神经网络
z千鑫16 小时前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss