Spark spark-submit 提交应用程序

Spark spark-submit 提交应用程序

Spark支持三种集群管理方式

  • Standalone---Spark自带的一种集群管理方式,易于构建集群。
  • Apache Mesos---通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用。
  • Hadoop YARN---Hadoop2中的资源管理器。

注意

1、在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用Standalone模式效率最高。

2、Spark可以在应用间(通过集群管理器)和应用中(如果一个SparkContext中有多项计算任务)进行资源调度。

Running Spark on YARN

cluster mode

复制代码
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
lib/spark-examples*.jar \
10

client mode

复制代码
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
lib/spark-examples*.jar \
10

spark-submit 详细参数说明

参数名 参数说明
---master master 的地址,提交任务到哪里执行,例如 spark://host:port, yarn, local。具体指可参考下面关于Master_URL的列表
---deploy-mode 在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client
---class 应用程序的主类,仅针对 java 或 scala 应用
---name 应用程序的名称
---jars 用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下
---packages 包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标
---exclude-packages 为了避免冲突 而指定不包含的 package
---repositories 远程 repository
---conf PROP=VALUE 指定 spark 配置属性的值, 例如 -conf spark.executor.extraJavaOptions="-XX:MaxPermSize=256m"
---properties-file 加载的配置文件,默认为 conf/spark-defaults.conf
---driver-memory Driver内存,默认 1G
---driver-java-options 传给 driver 的额外的 Java 选项
---driver-library-path 传给 driver 的额外的库路径
---driver-class-path 传给 driver 的额外的类路径
---driver-cores Driver 的核数,默认是1。在 yarn 或者 standalone 下使用
---executor-memory 每个 executor 的内存,默认是1G
---total-executor-cores 所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用
---num-executors 启动的 executor 数量。默认为2。在 yarn 下使用
---executor-core 每个 executor 的核数。在yarn或者standalone下使用

Master_URL的值

Master URL 含义
local 使用1个worker线程在本地运行Spark应用程序
local[K] 使用K个worker线程在本地运行Spark应用程序
local 使用所有剩余worker线程在本地运行Spark应用程序
spark://HOST:PORT 连接到Spark Standalone集群,以便在该集群上运行Spark应用程序
mesos://HOST:PORT 连接到Mesos集群,以便在该集群上运行Spark应用程序
yarn-client 以client方式连接到YARN集群,集群的定位由环境变量HADOOP_CONF_DIR定义,该方式driver在client运行。
yarn-cluster 以cluster方式连接到YARN集群,集群的定位由环境变量HADOOP_CONF_DIR定义,该方式driver也在集群中运行。

区分client,cluster,本地模式

下图是典型的client模式,spark的drive在任务提交的本机上。

下图是cluster模式,spark drive在yarn上。

三种模式的比较

Yarn Cluster Yarn Client Spark Standalone
Driver在哪里运行 Application Master Client Client
谁请求资源 Application Master Application Master Client
谁启动executor进程 Yarn NodeManager Yarn NodeManager Spark Slave
驻内存进程 1.Yarn ResourceManager 2.NodeManager 1.Yarn ResourceManager 2.NodeManager 1.Spark Master 2.Spark Worker
是否支持Spark Shell No Yes Yes

spark-submit提交应用程序示例

复制代码
# Run application locally on 8 cores(本地模式8核)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master local[8] \
  /path/to/examples.jar \
  100
# Run on a Spark standalone cluster in client deploy mode(standalone client模式)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000
# Run on a Spark standalone cluster in cluster deploy mode with supervise(standalone cluster模式使用supervise)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --deploy-mode cluster \
  --supervise \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000
# Run on a YARN cluster(YARN cluster模式)
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master yarn \
  --deploy-mode cluster \  # can be client for client mode
  --executor-memory 20G \
  --num-executors 50 \
  /path/to/examples.jar \
  1000
# Run on a Mesos cluster in cluster deploy mode with supervise(Mesos cluster模式使用supervise)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master mesos://207.184.161.138:7077 \
  --deploy-mode cluster \
  --supervise \
  --executor-memory 20G \
  --total-executor-cores 100 \
  http://path/to/examples.jar \
  1000
# Run a Python application on a Spark standalone cluster(standalone cluster模式提交python application)
./bin/spark-submit \
  --master spark://207.184.161.138:7077 \
  examples/src/main/python/pi.py \
  1000

一个例子

shell 复制代码
spark-submit \
--master yarn \
--queue root.sparkstreaming \
--deploy-mode cluster \
--supervise \
--name spark-job \
--num-executors 20 \
--executor-cores 2 \
--executor-memory 4g \
--conf spark.dynamicAllocation.maxExecutors=9 \
--files commons.xml \
--class com.***.realtime.helper.HelperHandle \
BSS-ONSS-Spark-Realtime-1.0-SNAPSHOT.jar 500
相关推荐
Robot侠4 小时前
极简LLM入门指南4
大数据·python·llm·prompt·提示工程
技术钱5 小时前
vue3解决大数据加载页面卡顿问题
大数据
福客AI智能客服8 小时前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
小五传输9 小时前
隔离网闸的作用是什么?新型网闸如何构筑“数字护城河”?
大数据·运维·安全
jkyy20149 小时前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
蚁巡信息巡查系统10 小时前
政府网站与政务新媒体检查指标抽查通报如何面对
大数据·内容运营
脸大是真的好~10 小时前
分布式锁-基于redis实现分布式锁(不推荐)- 改进利用LUA脚本(不推荐)前面都是原理 - Redisson分布式锁
redis·分布式·lua
视界先声10 小时前
2025年GEO自动化闭环构建实践:监测工具选型与多平台反馈机制工程分享
大数据·人工智能·自动化
百***243710 小时前
GPT5.1 vs Claude-Opus-4.5 全维度对比及快速接入实战
大数据·人工智能·gpt
liuniansilence11 小时前
🚀 高并发场景下的救星:BullMQ如何实现智能流量削峰填谷
前端·分布式·消息队列