3.1 什么是支持向量机(SVM)?

3.1 什么是支持向量机(SVM)?

支持向量机 (Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍。关于SVM,流传着一个关于天使与魔鬼的故事

传说魔鬼和天使玩了一个游戏,魔鬼在桌上放了两种颜色的球,如图3.1所示。魔鬼让天使用一根木棍将它们分开。这对天使来说,似乎太容易了。天使不假思索地一摆,便完成了任务,如图3.2所示。魔鬼又加入了更多的球。随着球的增多,似乎有的球不能再被原来的木棍正确分开,如图3.3所示。

SVM 实际上是在为天使找到木棒的最佳放置位置,使得两边的球都离分隔它们的木棒足够远,如图3.4所示。依照SVM为天使选择的木棒位置,魔鬼即使按刚才的方式继续加入新球,木棒也能很好地将两类不同的球分开,如图3.5所示。

看到天使已经很好地解决了用木棒线性分球的问题,魔鬼又给了天使一个新的挑战,如图3.6所示。按照这种球的摆法,世界上貌似没有一根木棒可以将它们完美分开。但天使毕竟有法力,他一拍桌子,便让这些球飞到了空中,然后凭借念力抓起一张纸片,插在了两类球的中间,如图3.7所示。从魔鬼的角度看这些球,则像是被一条曲线完美的切开了,如图3.8所示。

​ 后来,"无聊"的科学家们把这些 称为"数据 ",把木棍 称为"分类面 ",找到最大间隔的木棒位置的过程称为"优化 ",拍桌子让球飞到空中的念力叫"核映射 ",在空中分隔球的纸片称为"分类超平面"。这便是SVM的童话故事。

相关文章:什么是"感知机"?
在现实世界的机器学习领域,SVM涵盖了各个方面的知识,也是面试题目中常见的基础模型。

在空间上线性可分的两类点,分别向SVM分类的超平面上做投影,这些点在超平面上的投影仍然是线性可分的吗?

回答:对于任意线性可分的两组点,它们在SVM分类超平面上的投影都是线性不可分的
参考文献:

《百面机器学习》 诸葛越主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-48736-0

2022年8月第1版(2022年1月北京第19次印刷)

相关推荐
没有梦想的咸鱼185-1037-166328 分钟前
基于R语言机器学习方法在生态经济学领域中的实践技术应用
开发语言·机器学习·数据分析·r语言
Webb Yu44 分钟前
Azure Databricks 实践:数据分析、机器学习、ETL 与 Delta Lake
机器学习·数据分析·azure
君名余曰正则1 小时前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
君名余曰正则2 小时前
机器学习04——决策树(信息增益、信息增益率、ID3、C4.5、CART、剪枝、连续值缺失值处理)
人工智能·决策树·机器学习
Mendix2 小时前
使用 Altair RapidMiner 将机器学习引入您的 Mendix 应用程序
人工智能·机器学习
九章云极AladdinEdu3 小时前
Kubernetes设备插件开发实战:实现GPU拓扑感知调度
人工智能·机器学习·云原生·容器·kubernetes·迁移学习·gpu算力
java1234_小锋3 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)
python·机器学习·scikit-learn
非门由也5 小时前
《sklearn机器学习——特征提取》
人工智能·机器学习·sklearn
Godspeed Zhao7 小时前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达