3.1 什么是支持向量机(SVM)?

3.1 什么是支持向量机(SVM)?

支持向量机 (Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍。关于SVM,流传着一个关于天使与魔鬼的故事

传说魔鬼和天使玩了一个游戏,魔鬼在桌上放了两种颜色的球,如图3.1所示。魔鬼让天使用一根木棍将它们分开。这对天使来说,似乎太容易了。天使不假思索地一摆,便完成了任务,如图3.2所示。魔鬼又加入了更多的球。随着球的增多,似乎有的球不能再被原来的木棍正确分开,如图3.3所示。

SVM 实际上是在为天使找到木棒的最佳放置位置,使得两边的球都离分隔它们的木棒足够远,如图3.4所示。依照SVM为天使选择的木棒位置,魔鬼即使按刚才的方式继续加入新球,木棒也能很好地将两类不同的球分开,如图3.5所示。

看到天使已经很好地解决了用木棒线性分球的问题,魔鬼又给了天使一个新的挑战,如图3.6所示。按照这种球的摆法,世界上貌似没有一根木棒可以将它们完美分开。但天使毕竟有法力,他一拍桌子,便让这些球飞到了空中,然后凭借念力抓起一张纸片,插在了两类球的中间,如图3.7所示。从魔鬼的角度看这些球,则像是被一条曲线完美的切开了,如图3.8所示。

​ 后来,"无聊"的科学家们把这些 称为"数据 ",把木棍 称为"分类面 ",找到最大间隔的木棒位置的过程称为"优化 ",拍桌子让球飞到空中的念力叫"核映射 ",在空中分隔球的纸片称为"分类超平面"。这便是SVM的童话故事。

相关文章:什么是"感知机"?
在现实世界的机器学习领域,SVM涵盖了各个方面的知识,也是面试题目中常见的基础模型。

在空间上线性可分的两类点,分别向SVM分类的超平面上做投影,这些点在超平面上的投影仍然是线性可分的吗?

回答:对于任意线性可分的两组点,它们在SVM分类超平面上的投影都是线性不可分的
参考文献:

《百面机器学习》 诸葛越主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-48736-0

2022年8月第1版(2022年1月北京第19次印刷)

相关推荐
广州智造4 小时前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
ayiya_Oese8 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz8 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
IT古董10 小时前
【漫话机器学习系列】261.工具变量(Instrumental Variables)
人工智能·机器学习
lucky_lyovo14 小时前
机器学习-特征工程
人工智能·机器学习
我想睡觉26115 小时前
Python训练营打卡DAY27
开发语言·python·机器学习
Jackson@ML15 小时前
一分钟了解机器学习
人工智能·机器学习
机器学习之心16 小时前
贝叶斯优化Transformer融合支持向量机多变量时间序列预测,Matlab实现
支持向量机·matlab·transformer·多变量时间序列预测
Code哈哈笑16 小时前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
拓端研究室TRL16 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析