3.1 什么是支持向量机(SVM)?

3.1 什么是支持向量机(SVM)?

支持向量机 (Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍。关于SVM,流传着一个关于天使与魔鬼的故事

传说魔鬼和天使玩了一个游戏,魔鬼在桌上放了两种颜色的球,如图3.1所示。魔鬼让天使用一根木棍将它们分开。这对天使来说,似乎太容易了。天使不假思索地一摆,便完成了任务,如图3.2所示。魔鬼又加入了更多的球。随着球的增多,似乎有的球不能再被原来的木棍正确分开,如图3.3所示。

SVM 实际上是在为天使找到木棒的最佳放置位置,使得两边的球都离分隔它们的木棒足够远,如图3.4所示。依照SVM为天使选择的木棒位置,魔鬼即使按刚才的方式继续加入新球,木棒也能很好地将两类不同的球分开,如图3.5所示。

看到天使已经很好地解决了用木棒线性分球的问题,魔鬼又给了天使一个新的挑战,如图3.6所示。按照这种球的摆法,世界上貌似没有一根木棒可以将它们完美分开。但天使毕竟有法力,他一拍桌子,便让这些球飞到了空中,然后凭借念力抓起一张纸片,插在了两类球的中间,如图3.7所示。从魔鬼的角度看这些球,则像是被一条曲线完美的切开了,如图3.8所示。

​ 后来,"无聊"的科学家们把这些 称为"数据 ",把木棍 称为"分类面 ",找到最大间隔的木棒位置的过程称为"优化 ",拍桌子让球飞到空中的念力叫"核映射 ",在空中分隔球的纸片称为"分类超平面"。这便是SVM的童话故事。

相关文章:什么是"感知机"?
在现实世界的机器学习领域,SVM涵盖了各个方面的知识,也是面试题目中常见的基础模型。

在空间上线性可分的两类点,分别向SVM分类的超平面上做投影,这些点在超平面上的投影仍然是线性可分的吗?

回答:对于任意线性可分的两组点,它们在SVM分类超平面上的投影都是线性不可分的
参考文献:

《百面机器学习》 诸葛越主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-48736-0

2022年8月第1版(2022年1月北京第19次印刷)

相关推荐
艾派森13 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
忘梓.1 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
Chef_Chen1 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
MarkHD2 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习
打羽毛球吗️2 小时前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
小馒头学python3 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
正义的彬彬侠3 小时前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
羊小猪~~3 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
正义的彬彬侠4 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn