机器学习(二)

线性模型:

离散转为连续的变换:

检查是否有"序"的变化,若有"序",则连续化;否则,转化为k维向量

最小二乘解:

多元线性回归:

广义线性模型:

线性判别分析:

由于将样例投影到一条直线(低维空间),因此也被视为一种"监督降维"技术。

多分类学习:

拆解法:将一个多分类任务拆分为若干个二分类任务求解

类别不平衡:

当要丢掉的小类的价值更好时我们才需要处理

常见的类别不平衡学习方法:

过采样:使小类增加,增加到与大类一样多

欠采样:使大类变小,使得与小类一样多

阙值移动:少数算法才能做到,比如支持向量机

决策树:

策略:"分而治之";自根至叶的递归过程;在每个中间结点寻找一个"划分"属性

三种停止条件:

1.当前结点包含的样本全属于同一类别,无需划分

2.当前属性集为空,或是所有样本在所有属性上取值相同,无法划分

3.当前结点包含的样本集合为空,不能划分

信息增益划分:

信息熵是度量样本集合"纯度"是常用的一种指标

其他属性划分准则:

信息增益:对可取值数目较多的属性有所偏好

增益率:

基尼指数:

决策树剪枝:

剪枝是决策树对付"过拟合"的主要手段。

预剪枝:提前终止某些分支的生长。

后剪枝:生成一颗完全树,再"回头"剪枝。

缺失值的处理:

使用带缺失值的样例,需处理:

Q1:如何进行划分属性选择

Q2:给定划分属性,若样本在该属性上的值缺失,如何进行划分

基本思路:样本赋权,权重划分

相关推荐
AKAMAI7 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp5208 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨8 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom8 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn8 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美8 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch8 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4158 小时前
SGLang学习笔记
人工智能·笔记·学习
飞哥数智坊9 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪10 小时前
AI建站推荐
大数据·人工智能·python