机器学习(二)

线性模型:

离散转为连续的变换:

检查是否有"序"的变化,若有"序",则连续化;否则,转化为k维向量

最小二乘解:

多元线性回归:

广义线性模型:

线性判别分析:

由于将样例投影到一条直线(低维空间),因此也被视为一种"监督降维"技术。

多分类学习:

拆解法:将一个多分类任务拆分为若干个二分类任务求解

类别不平衡:

当要丢掉的小类的价值更好时我们才需要处理

常见的类别不平衡学习方法:

过采样:使小类增加,增加到与大类一样多

欠采样:使大类变小,使得与小类一样多

阙值移动:少数算法才能做到,比如支持向量机

决策树:

策略:"分而治之";自根至叶的递归过程;在每个中间结点寻找一个"划分"属性

三种停止条件:

1.当前结点包含的样本全属于同一类别,无需划分

2.当前属性集为空,或是所有样本在所有属性上取值相同,无法划分

3.当前结点包含的样本集合为空,不能划分

信息增益划分:

信息熵是度量样本集合"纯度"是常用的一种指标

其他属性划分准则:

信息增益:对可取值数目较多的属性有所偏好

增益率:

基尼指数:

决策树剪枝:

剪枝是决策树对付"过拟合"的主要手段。

预剪枝:提前终止某些分支的生长。

后剪枝:生成一颗完全树,再"回头"剪枝。

缺失值的处理:

使用带缺失值的样例,需处理:

Q1:如何进行划分属性选择

Q2:给定划分属性,若样本在该属性上的值缺失,如何进行划分

基本思路:样本赋权,权重划分

相关推荐
硅谷秋水22 分钟前
RoboBrain 2.5:视野中的深度,思维中的时间
深度学习·机器学习·计算机视觉·语言模型·机器人
zhangfeng113327 分钟前
Warmup Scheduler深度学习训练中,在训练初期使用较低学习率进行预热(Warmup),然后再按照预定策略(如余弦退火、阶梯下降等)衰减学习率的方法
人工智能·深度学习·学习
Faker66363aaa29 分钟前
城市地标建筑与车辆检测 - 基于YOLOv10n的高效目标检测模型训练与应用
人工智能·yolo·目标检测
沃达德软件32 分钟前
电信诈骗预警平台功能解析
大数据·数据仓库·人工智能·深度学习·机器学习·数据库开发
Hy行者勇哥37 分钟前
Seedance 全面解析:定义、使用指南、同类软件与完整攻略
人工智能·学习方法·视频
琅琊榜首20201 小时前
AI赋能内容转化:小说转短剧实操全流程(零编程基础适配)
大数据·人工智能
青铜弟弟1 小时前
基于物理的深度学习模型
人工智能·深度学习
是店小二呀1 小时前
atvoss:异构计算视觉处理与AI模型加速套件深度解析
人工智能
MaoziShan2 小时前
CMU Subword Modeling | 07 Allomorphy
人工智能·机器学习·语言模型·自然语言处理
诚思报告YH2 小时前
生物制剂与生物类似药市场洞察:2026-2032年复合增长率(CAGR)为8.1%
大数据·人工智能·microsoft