机器学习(二)

线性模型:

离散转为连续的变换:

检查是否有"序"的变化,若有"序",则连续化;否则,转化为k维向量

最小二乘解:

多元线性回归:

广义线性模型:

线性判别分析:

由于将样例投影到一条直线(低维空间),因此也被视为一种"监督降维"技术。

多分类学习:

拆解法:将一个多分类任务拆分为若干个二分类任务求解

类别不平衡:

当要丢掉的小类的价值更好时我们才需要处理

常见的类别不平衡学习方法:

过采样:使小类增加,增加到与大类一样多

欠采样:使大类变小,使得与小类一样多

阙值移动:少数算法才能做到,比如支持向量机

决策树:

策略:"分而治之";自根至叶的递归过程;在每个中间结点寻找一个"划分"属性

三种停止条件:

1.当前结点包含的样本全属于同一类别,无需划分

2.当前属性集为空,或是所有样本在所有属性上取值相同,无法划分

3.当前结点包含的样本集合为空,不能划分

信息增益划分:

信息熵是度量样本集合"纯度"是常用的一种指标

其他属性划分准则:

信息增益:对可取值数目较多的属性有所偏好

增益率:

基尼指数:

决策树剪枝:

剪枝是决策树对付"过拟合"的主要手段。

预剪枝:提前终止某些分支的生长。

后剪枝:生成一颗完全树,再"回头"剪枝。

缺失值的处理:

使用带缺失值的样例,需处理:

Q1:如何进行划分属性选择

Q2:给定划分属性,若样本在该属性上的值缺失,如何进行划分

基本思路:样本赋权,权重划分

相关推荐
雷焰财经12 小时前
务实深耕,全栈赋能:宇信科技引领金融AI工程化落地新范式
人工智能·科技·金融
西柚小萌新12 小时前
【计算机视觉CV:标注工具】--ISAT
人工智能·计算机视觉
三万棵雪松12 小时前
【AI小智硬件程序(八)】
c++·人工智能·嵌入式·esp32·ai小智
永远都不秃头的程序员(互关)12 小时前
【K-Means深度探索(二)】K值之谜:肘部法则与轮廓系数,如何选出你的最佳K?
算法·机器学习·kmeans
基层小星12 小时前
用ai写完材料有个差不多后,材料星如何精准修改润色?
人工智能·ai·ai写作·笔杆子·公文写作·修改润色
码农幻想梦13 小时前
实验7 知识表示与推理
开发语言·人工智能·python
_YiFei13 小时前
从 “选题卡壳” 到 “PPT 定稿”,AI 如何搞定开题全流程?
人工智能
IT_陈寒13 小时前
SpringBoot 3.0实战:10个高效开发技巧让你的启动时间减少50%
前端·人工智能·后端
源于花海13 小时前
迁移学习的第二类方法:特征选择
人工智能·机器学习·迁移学习·特征选择
8K超高清13 小时前
2026科技风口:有哪些前沿场景即将落地?
网络·人工智能·科技·数码相机·计算机视觉