机器学习(二)

线性模型:

离散转为连续的变换:

检查是否有"序"的变化,若有"序",则连续化;否则,转化为k维向量

最小二乘解:

多元线性回归:

广义线性模型:

线性判别分析:

由于将样例投影到一条直线(低维空间),因此也被视为一种"监督降维"技术。

多分类学习:

拆解法:将一个多分类任务拆分为若干个二分类任务求解

类别不平衡:

当要丢掉的小类的价值更好时我们才需要处理

常见的类别不平衡学习方法:

过采样:使小类增加,增加到与大类一样多

欠采样:使大类变小,使得与小类一样多

阙值移动:少数算法才能做到,比如支持向量机

决策树:

策略:"分而治之";自根至叶的递归过程;在每个中间结点寻找一个"划分"属性

三种停止条件:

1.当前结点包含的样本全属于同一类别,无需划分

2.当前属性集为空,或是所有样本在所有属性上取值相同,无法划分

3.当前结点包含的样本集合为空,不能划分

信息增益划分:

信息熵是度量样本集合"纯度"是常用的一种指标

其他属性划分准则:

信息增益:对可取值数目较多的属性有所偏好

增益率:

基尼指数:

决策树剪枝:

剪枝是决策树对付"过拟合"的主要手段。

预剪枝:提前终止某些分支的生长。

后剪枝:生成一颗完全树,再"回头"剪枝。

缺失值的处理:

使用带缺失值的样例,需处理:

Q1:如何进行划分属性选择

Q2:给定划分属性,若样本在该属性上的值缺失,如何进行划分

基本思路:样本赋权,权重划分

相关推荐
Hello娃的14 分钟前
【神经网络】人工神经网络ANN
人工智能·深度学习·神经网络
RockHopper202521 分钟前
一种认知孪生xLLM架构的原理说明
人工智能·llm·数字孪生·认知孪生
weixin1997010801627 分钟前
哔哩哔哩 item_get_video - 获取视频详情接口对接全攻略:从入门到精通
人工智能·音视频
沛沛老爹28 分钟前
Web开发者实战RAG评估:从指标到工程化验证体系
前端·人工智能·llm·agent·rag·评估
qq_2004650533 分钟前
日益衰落的五常“礼、义、仁、智、信”,蒸蒸日上的五德“升、悟、净、正、合”
人工智能·起名大师·改名大师·姓名学大师·姓名学专家
Kiyra34 分钟前
阿里云 OSS + STS:安全的文件上传方案
网络·人工智能·安全·阿里云·系统架构·云计算·json
程途拾光15835 分钟前
自监督学习在无标签数据中的潜力释放
人工智能·学习
墨染天姬1 小时前
【AI】5w/1h分析法
人工智能
Blossom.1181 小时前
多模态大模型LoRA微调实战:从零构建企业级图文检索系统
人工智能·python·深度学习·学习·react.js·django·transformer
檐下翻书1731 小时前
模型蒸馏与压缩技术的新进展
人工智能