机器学习(二)

线性模型:

离散转为连续的变换:

检查是否有"序"的变化,若有"序",则连续化;否则,转化为k维向量

最小二乘解:

多元线性回归:

广义线性模型:

线性判别分析:

由于将样例投影到一条直线(低维空间),因此也被视为一种"监督降维"技术。

多分类学习:

拆解法:将一个多分类任务拆分为若干个二分类任务求解

类别不平衡:

当要丢掉的小类的价值更好时我们才需要处理

常见的类别不平衡学习方法:

过采样:使小类增加,增加到与大类一样多

欠采样:使大类变小,使得与小类一样多

阙值移动:少数算法才能做到,比如支持向量机

决策树:

策略:"分而治之";自根至叶的递归过程;在每个中间结点寻找一个"划分"属性

三种停止条件:

1.当前结点包含的样本全属于同一类别,无需划分

2.当前属性集为空,或是所有样本在所有属性上取值相同,无法划分

3.当前结点包含的样本集合为空,不能划分

信息增益划分:

信息熵是度量样本集合"纯度"是常用的一种指标

其他属性划分准则:

信息增益:对可取值数目较多的属性有所偏好

增益率:

基尼指数:

决策树剪枝:

剪枝是决策树对付"过拟合"的主要手段。

预剪枝:提前终止某些分支的生长。

后剪枝:生成一颗完全树,再"回头"剪枝。

缺失值的处理:

使用带缺失值的样例,需处理:

Q1:如何进行划分属性选择

Q2:给定划分属性,若样本在该属性上的值缺失,如何进行划分

基本思路:样本赋权,权重划分

相关推荐
Work(沉淀版)2 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空3 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问3 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven3 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5164 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊4 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin6 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮6 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻6 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑6 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互