上位机图像处理和嵌入式模块部署(qmacvisual图像识别)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

所谓图像识别,就是对图像进行分类处理,比如说判断图像上面的物体是飞机、还是蝴蝶。在深度学习和卷积神经网络CNN不像现在这样大行其道之前,大部分图像分类使用的还是传统机器学习的方法,比如说支持向量机,也就是svm。在特定的场合,如果图像本身质量比较高的话,使用svm做图像训练和预测还是非常合适的。今天,我们就来了解下qmacvisual是如何做图像训练和分类的。

1、创建工程和创建流程

要做好图像分类,首先需要创建一个工程、同时创建一个流程,这是基础。

2、使用图像分类的插件

图像插件的位置位于【检测识别】-》【分类器】下面。把插件拖到界面上,然后单击之后,如果不出意外,我们就可以看到这样的界面窗口,

如果仅仅是对图像进行训练,那么只需要做好中间的三个部分就可以了。这三个部分是选择图像的标签,也就是当前图像属于哪一类,里面其实就是1、2、3、4、5这样的内容。第二行就是配置哪些图像文件参与训练,大家在使用的时候,需要把文件里面图像的位置修改成自己本地目录实际图像的位置。最后一行,就是提示我们,训练之后图像相关模型参数文件应该放哪里。如果这三行都ok了,那么就可以点击训练模型按钮,开始图像训练了。

训练完毕之后,就可以使用这个模型进行预测了。有三个地方需要进行处理。第一个就是需要关联一下输入图像的位置。第二个就是加载一下模型的位置,这个模型文件可以是刚刚训练好的那个模型。第三个就是在tab页面上的参数设置,给每一个类别起一个名字,这样后面预测的时候,就可以在图片的左上方添显示相应的类别打印。

这一切都准备好了之后,我们就可以开始图片预测了。注意,测试的图片最好不要是之前训练的图片,而应该用专门的测试图片来进行验证,不然没有办法判断当前的模型是否ok。我们这里输入了一个camera的图片,看下执行效果,

本身qmacvisual还提供了很多其他测试的图片,大家可以去一一进行判断和练习。

3、完整的测试流程

整个测试训练和测试是分开来的。所以,如果是完整的测试,一般前面还会多一个图像加载的操作,界面上看是这样的,

4、实际使用

不管是生活中还是工厂制造领域,对于图像的分类是很常见的一个需求。很多时候,我们其实知道在什么位置,图像会发生变化,这个时候就是希望有一个软件能够告诉我们发生了什么样的变化。所以,这种场景就是典型的分类问题。另外一种稍微复杂一点的,就是定位和分类问题。不仅要知道是哪些物体,还需要知道他们在什么地方,这一类的问题一般用yolo去进行解决,效果也是非常好的,大家可以在课后多多实践、多多练习一下,相信也会有蛮多的收获。

相关推荐
土豆.exe6 分钟前
IfAI v0.3.0 - 从“文本“到“多模态“的感知升级
人工智能·编辑器
JicasdC123asd8 分钟前
如何使用YOLOv10n进行台风灾害区域识别与分类——基于改进的HAFB-2模型实现
人工智能·yolo·分类
抖知书20 分钟前
喂饭级AI提示词公开!帮短视频创作者写脚本大纲
人工智能
Elastic 中国社区官方博客20 分钟前
JINA AI 与 Elasticsearch 的集成
大数据·人工智能·elasticsearch·搜索引擎·全文检索·jina
高洁0128 分钟前
AI智能体搭建(3)
人工智能·深度学习·算法·数据挖掘·知识图谱
道可云41 分钟前
道可云人工智能每日资讯|南宁市公布第二批“人工智能+制造”应用场景“机会清单”和“能力清单”
人工智能·制造
ai_top_trends43 分钟前
不同 AI 生成 2026 年工作计划 PPT 的使用门槛对比
人工智能·python·powerpoint
人工智能AI技术1 小时前
开源大模型选型指南:从LLaMA3到文心ERNIE,实战适配不同业务场景
人工智能
TOWE technology1 小时前
聚焦价值 重塑增长
大数据·人工智能·企业
老顾聊技术1 小时前
“Anthropic 最新发布的 AI Skills:赋能任务自动化与跨领域应用“
运维·人工智能·自动化