矩阵理论的概念间的组合关系的公式

矩阵理论的概念间的组合关系的公式

现在很火执的人工智能技术,要求很高的数学基础知识。

除了微积分就是线性代数的内容了。自动微分框架是人工

智能技术的底层框架。其实就是实现了微积分的各种函数

的微积分运算而矣。线性代数的内容应用于计算机

的软件中的各个角落,除了线性代数,还要学习它的进阶课程

,这就是《矩阵理论》,需要全面了解矩阵的各个概念和运算。

下面给出了矩阵理论中各个主要的概念之间的关联关系,

可以以此为蓝图,按图索骥地精读《矩阵理论》

矩阵在计算机中用二维数组来表示,在图论,数据结构,

计算机图形学等众多的领域中使用。

数学符号虽然能简洁和准确地表达出数学专业的语义,但不利于

计算机程序员阅读与理解,所以这里不使用数学符号,仅用文字

来描述,以达到让读者理解概念之间的关系与区别。

线性=齐次性+可加性

线性空间=集合+线性运算

欧氏空间=线性空间+实数域+内积运算

酉空间=线性空间+复数域+内积运算

映射=原像+像

实函数=映射+原像实数域+像实数域

复函数=映射+原像复数域+像复数域

函数=映射+原像数域+像数域

范数=映射+原像空间+像实数域

向量范数=映射+原像线性空间+像实数域

矩阵范数=映射+原像矩阵空间+像实数域

算子=映射+原像空间U+像空间V

变换=映射+原像空间U+像空间U

线性算子=映射+原像线性空间U+像线性空间V

线性变换=映射+原像线性空间U+像线性空间U

正交变换=线性变换+欧氏空间+正交性

对称变换=线性变换+欧氏空间+对称性

酉变换=线性变换+酉空间+正交性

Hermite变换=线性变换+酉空间+对称性

实线性空间=实数域+向量加法+数乘运算

矩阵空间=实数域(或者复数域)+矩阵加法+数乘运算

复数域=实数域+拓域

向量=实数+N维拓域

矩阵=向量+N维拓域

位似变换=线性变换+数乘运算

恒等变换=位似变换+系数为1

投影算子=线性算子+原像线性空间V+像线性空间V的子空间

相关推荐
iloveas20141 天前
three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)
线性代数·矩阵·webgl
Zda天天爱打卡2 天前
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.27 线性代数王国:矩阵分解实战指南
python·线性代数·numpy
因兹菜2 天前
[LeetCode]day6 59.螺旋矩阵2
算法·leetcode·矩阵
এ旧栎3 天前
蓝桥与力扣刷题(240 搜索二维矩阵||)
算法·leetcode·矩阵·学习方法
背太阳的牧羊人3 天前
分词器的词表大小以及如果分词器的词表比模型的词表大,那么模型的嵌入矩阵需要被调整以适应新的词表大小。
开发语言·人工智能·python·深度学习·矩阵
cccc楚染rrrr3 天前
240. 搜索二维矩阵||
java·数据结构·线性代数·算法·矩阵
hey_sml3 天前
[NOIP2007]矩阵取数游戏
java·线性代数·算法
上海迪士尼355 天前
A星算法两元障碍物矩阵转化为rrt算法四元障碍物矩阵
算法·matlab·矩阵
嘻嘻仙人5 天前
第二讲 矩阵消元——用矩阵的左乘表示矩阵消元的过程
线性代数·矩阵·消元
Dann Hiroaki6 天前
随机矩阵投影长度保持引理及其证明
线性代数·矩阵·概率论