矩阵理论的概念间的组合关系的公式

矩阵理论的概念间的组合关系的公式

现在很火执的人工智能技术,要求很高的数学基础知识。

除了微积分就是线性代数的内容了。自动微分框架是人工

智能技术的底层框架。其实就是实现了微积分的各种函数

的微积分运算而矣。线性代数的内容应用于计算机

的软件中的各个角落,除了线性代数,还要学习它的进阶课程

,这就是《矩阵理论》,需要全面了解矩阵的各个概念和运算。

下面给出了矩阵理论中各个主要的概念之间的关联关系,

可以以此为蓝图,按图索骥地精读《矩阵理论》

矩阵在计算机中用二维数组来表示,在图论,数据结构,

计算机图形学等众多的领域中使用。

数学符号虽然能简洁和准确地表达出数学专业的语义,但不利于

计算机程序员阅读与理解,所以这里不使用数学符号,仅用文字

来描述,以达到让读者理解概念之间的关系与区别。

线性=齐次性+可加性

线性空间=集合+线性运算

欧氏空间=线性空间+实数域+内积运算

酉空间=线性空间+复数域+内积运算

映射=原像+像

实函数=映射+原像实数域+像实数域

复函数=映射+原像复数域+像复数域

函数=映射+原像数域+像数域

范数=映射+原像空间+像实数域

向量范数=映射+原像线性空间+像实数域

矩阵范数=映射+原像矩阵空间+像实数域

算子=映射+原像空间U+像空间V

变换=映射+原像空间U+像空间U

线性算子=映射+原像线性空间U+像线性空间V

线性变换=映射+原像线性空间U+像线性空间U

正交变换=线性变换+欧氏空间+正交性

对称变换=线性变换+欧氏空间+对称性

酉变换=线性变换+酉空间+正交性

Hermite变换=线性变换+酉空间+对称性

实线性空间=实数域+向量加法+数乘运算

矩阵空间=实数域(或者复数域)+矩阵加法+数乘运算

复数域=实数域+拓域

向量=实数+N维拓域

矩阵=向量+N维拓域

位似变换=线性变换+数乘运算

恒等变换=位似变换+系数为1

投影算子=线性算子+原像线性空间V+像线性空间V的子空间

相关推荐
跨境摸鱼1 天前
TikTok多账号风控:找对安全支点,解锁规模化运营
大数据·安全·矩阵·重构·跨境电商
咚咚王者1 天前
人工智能之数学基础 线性代数:第五章 张量
人工智能·线性代数
跨境卫士—小依1 天前
打破认知牢笼:合规新纪元,运营成本如何变身增长引擎?
大数据·矩阵·跨境电商·亚马逊·防关联
拉姆哥的小屋1 天前
基于多模态深度学习的城市公园社交媒体评论智能分析系统——从BERTopic主题建模到CLIP图文一致性的全栈实践
人工智能·python·深度学习·矩阵·媒体
RickyWasYoung1 天前
【笔记】矩阵的谱半径
笔记·算法·矩阵
醒过来摸鱼2 天前
空间直线方程
线性代数·概率论
测试人社区-小明2 天前
涂鸦板测试指南:从基础功能到用户体验的完整框架
人工智能·opencv·线性代数·微服务·矩阵·架构·ux
hweiyu002 天前
数据结构:矩阵
数据结构·线性代数·矩阵
拉姆哥的小屋2 天前
从400维向量到160000维矩阵:基于深度学习的火焰参数预测系统全解析
开发语言·人工智能·python·深度学习·线性代数·算法·矩阵
咚咚王者2 天前
人工智能之数学基础 线性代数:第四章 矩阵分解
人工智能·线性代数·矩阵