矩阵理论的概念间的组合关系的公式

矩阵理论的概念间的组合关系的公式

现在很火执的人工智能技术,要求很高的数学基础知识。

除了微积分就是线性代数的内容了。自动微分框架是人工

智能技术的底层框架。其实就是实现了微积分的各种函数

的微积分运算而矣。线性代数的内容应用于计算机

的软件中的各个角落,除了线性代数,还要学习它的进阶课程

,这就是《矩阵理论》,需要全面了解矩阵的各个概念和运算。

下面给出了矩阵理论中各个主要的概念之间的关联关系,

可以以此为蓝图,按图索骥地精读《矩阵理论》

矩阵在计算机中用二维数组来表示,在图论,数据结构,

计算机图形学等众多的领域中使用。

数学符号虽然能简洁和准确地表达出数学专业的语义,但不利于

计算机程序员阅读与理解,所以这里不使用数学符号,仅用文字

来描述,以达到让读者理解概念之间的关系与区别。

线性=齐次性+可加性

线性空间=集合+线性运算

欧氏空间=线性空间+实数域+内积运算

酉空间=线性空间+复数域+内积运算

映射=原像+像

实函数=映射+原像实数域+像实数域

复函数=映射+原像复数域+像复数域

函数=映射+原像数域+像数域

范数=映射+原像空间+像实数域

向量范数=映射+原像线性空间+像实数域

矩阵范数=映射+原像矩阵空间+像实数域

算子=映射+原像空间U+像空间V

变换=映射+原像空间U+像空间U

线性算子=映射+原像线性空间U+像线性空间V

线性变换=映射+原像线性空间U+像线性空间U

正交变换=线性变换+欧氏空间+正交性

对称变换=线性变换+欧氏空间+对称性

酉变换=线性变换+酉空间+正交性

Hermite变换=线性变换+酉空间+对称性

实线性空间=实数域+向量加法+数乘运算

矩阵空间=实数域(或者复数域)+矩阵加法+数乘运算

复数域=实数域+拓域

向量=实数+N维拓域

矩阵=向量+N维拓域

位似变换=线性变换+数乘运算

恒等变换=位似变换+系数为1

投影算子=线性算子+原像线性空间V+像线性空间V的子空间

相关推荐
Hotlogin7 小时前
基于分布式指纹引擎的矩阵运营技术实践:突破平台风控的工程化解决方案
分布式·爬虫·线性代数·矩阵
GIS程序媛—椰子9 小时前
【数学】线性代数(Python)
python·线性代数·机器学习
猿儿本无心1 天前
WebGL数学手记:矩阵基础
线性代数·矩阵·webgl
双叶8361 天前
(51单片机)矩阵按键密码锁表白(C语言代码编撰)(矩阵按键教程)(LCD1602浅教程)
c语言·开发语言·c++·算法·游戏·矩阵·51单片机
爪娃侠1 天前
LeetCode热题100记录-【矩阵、图论】
leetcode·矩阵·图论
weixin_428498491 天前
如何判断多个点组成的3维面不是平的,如果不是平的,如何拆分成多个平面
线性代数
呵呵哒( ̄▽ ̄)"2 天前
常考题:通过解方程组求矩阵
线性代数·矩阵
RedMery2 天前
多元高斯分布函数
线性代数·矩阵·概率论
2301_764441333 天前
Altshuller矛盾矩阵查询:基于python和streamlit
python·线性代数·矩阵
呵呵哒( ̄▽ ̄)"3 天前
线性代数:同解(2)
线性代数