dbscan算法实现鸢尾花聚类(python实现)

DBscan算法原理 :

dbscan算法-CSDN博客

法一(调库) :

直接调库 :

复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import StandardScaler

# 加载数据集
iris = datasets.load_iris()
X = iris.data

# 数据预处理,标准化数据
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 使用DBSCAN聚类算法
dbscan = DBSCAN(eps=0.5, min_samples=5) # 获取DBSCAN聚类对象
y_pred = dbscan.fit_predict(X)

# 输出聚类结果
print('聚类结果:', y_pred)

# 可视化
pca = PCA(n_components=2)
transformed = pca.fit_transform(X)

print(transformed)

# 绘制聚类结果
plt.scatter(transformed[:, 0], transformed[:, 1], c=y_pred)
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.title('DBSCAN Clustering on Iris Dataset')
plt.show()

其中重要的代码也就两行 :

复制代码
# 使用DBSCAN聚类算法
dbscan = DBSCAN(eps=0.5, min_samples=5) # 获取DBSCAN聚类对象
y_pred = dbscan.fit_predict(X)

实现效果 :

法二(手写):

思路 : 根据原理实现,可根据具体注释理解(相信一定能够看懂)

复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA

def distance(p1, p2): # 计算两点的欧式距离
    return np.sqrt(np.sum((p1 - p2) ** 2))

def region_query(data, idx , eps): # 获取与data相邻点的下标集合
    neighbors = [] # 创建空邻居列表
    for index, point in enumerate(data):
        if distance(point, data[idx]) <= eps:
            neighbors.append(index)
    return neighbors

def expand_cluster(data, labels, point_index, cluster_label, eps, min_samples): # 对点进行扩展
    neighbors = region_query(data, point_index, eps)
    if len(neighbors) < min_samples:# 领域内少于min_samples --> 为噪声点
        labels[point_index] = -1  # 标记为噪声点
        return False
    else:
        labels[point_index] = cluster_label # 标记为当前标签
        for neighbor_index in neighbors:
            if labels[neighbor_index] == 0:# 该点未访问过
                labels[neighbor_index] = cluster_label
                expand_cluster(data, labels, neighbor_index, cluster_label, eps, min_samples) # 继续找下去 , 递归
        return True

def dbscan(data, eps, min_samples):
    n = len(data) # 求数据的长度
    labels = np.zeros(n)  # 0表示未分类  : 先全部赋值为 0
    cluster_label = 0 # 簇的数量 / 簇的标记 , 每当一个新的聚类被创建时,cluster_label的值会递增,以便为下一个聚类指定不同的标签。

    # 类似于BFS
    for idx in range(n):# 访问所有点
        if labels[idx] == 0:# 当前点未访问
            if expand_cluster(data, labels, idx , cluster_label + 1, eps, min_samples):
                cluster_label += 1

    return labels


# 准备数据准备
iris = datasets.load_iris()
x = iris.data # 导入鸢尾花数据集

# DBSCAN进行聚类
eps = 0.5  # 邻域半径
min_samples = 5  # 最小样本数
labels = dbscan(x, eps, min_samples) # 获取聚类结果

print(labels)

# 可视化
pca = PCA(n_components=2)
transformed = pca.fit_transform(x)

plt.scatter(transformed[:, 0], transformed[:, 1], c=labels)
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.title('DBSCAN Clustering on Iris Dataset')
plt.show()

实现效果 :

具体分类数据 :

相关推荐
运器1232 分钟前
【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
开发语言·人工智能·python·算法·ai·散列表·ai编程
算法_小学生2 分钟前
LeetCode 287. 寻找重复数(不修改数组 + O(1) 空间)
数据结构·算法·leetcode
岁忧3 分钟前
(LeetCode 每日一题) 1865. 找出和为指定值的下标对 (哈希表)
java·c++·算法·leetcode·go·散列表
alphaTao3 分钟前
LeetCode 每日一题 2025/6/30-2025/7/6
算法·leetcode·职场和发展
ゞ 正在缓冲99%…3 分钟前
leetcode67.二进制求和
算法·leetcode·位运算
YuTaoShao6 分钟前
【LeetCode 热题 100】240. 搜索二维矩阵 II——排除法
java·算法·leetcode
写个博客1 小时前
暑假算法日记第二天
算法
ChaITSimpleLove1 小时前
.NET9 实现排序算法(MergeSortTest 和 QuickSortTest)性能测试
算法·排序算法·.net·benchmarkdotnet·datadog.trace
CVer儿1 小时前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
Owen_Q1 小时前
Denso Create Programming Contest 2025(AtCoder Beginner Contest 413)
开发语言·算法·职场和发展