机器学习 - 神经网络中的训练模型

接着上一篇机器学习-创建一个PyTorch classification model做进一步陈述。

训练模型的步骤:

  1. Forward pass : The model goes through all of the training data once, performing its forward() function calculations (model(x_train))
  2. Calculate the loss : 使用 loss = loss_fn(y_pred, y_train)
  3. Zero gradients : optimizer.zero_grad()
  4. Perform backpropagation on the loss : Computes the gradient of the loss with respect for every model parameter to be updated (each parameter with requires_grad=True). This is known as backpropagation, hence "backwards" (loss.backward())
  5. Step the optimizer (gradient descent) : Update the parameters with requires_grad = True with respect to the loss gradients in order to improve them (optimizer.step())

python 复制代码
# View the first 5 outputs of the forward pass on the test data
y_logits = model_0(X_test.to("cpu"))[:5]
print(y_logits)

# Use sigmoid on model logits 
y_pred_probs = torch.sigmoid(y_logits)
print(y_pred_probs)

# Find the predicted labels (round the prediction probabilities)
y_preds = torch.round(y_pred_probs)

# In full 
y_pred_labels = torch.round(torch.sigmoid(model_0(X_test))[:5])

# Check for equality 
print(torch.eq(y_preds.squeeze(), y_pred_labels.squeeze()))

print(y_preds.squeeze())

# 结果如下
tensor([[ 0.3798],
        [ 0.2257],
        [ 0.4383],
        [ 0.3647],
        [-0.1101]], grad_fn=<SliceBackward0>)
tensor([[0.5938],
        [0.5562],
        [0.6078],
        [0.5902],
        [0.4725]], grad_fn=<SigmoidBackward0>)
tensor([True, True, True, True, True])
tensor([1., 1., 1., 1., 0.], grad_fn=<SqueezeBackward0>)

The use of the sigmoid activation function is often only for binary classification logits.

The use of the sigmoid activation function is not required when passing the model's raw outputs to the nn.BCEWithLogitsLoss (the "logits" in logits loss is because it works on the model's raw logits output), this is because it has a sigmoid function built-in.


创建 training 和 testing loop

python 复制代码
# 创建一个 loss function
loss_fn = nn.BCEWithLogitsLoss()

def accuracy_fn(y_true, y_pred):
  correct = torch.eq(y_true, y_pred).sum().item()
  acc = (correct / len(y_pred)) * 100
  return acc

# Build a train and test loop 

torch.manual_seed(42)

# Set the number of epochs
epochs = 100

# Put data into device
X_train, y_train = X_train.to("cpu"), y_train.to("cpu")
X_test, y_test = X_test.to("cpu"), y_test.to("cpu")

# Build training and evaluation loop
for epoch in range(epochs):
  ### Training
  model_0.train()

  # 1. Forward pass (model outputs raw logits)
  y_logits = model_0(X_train).squeeze()
  y_pred = torch.round(torch.sigmoid(y_logits)) # turn logits -> pred probs -> pred labls

  # 2. Calculate loss/accuracy
  loss = loss_fn(y_logits,
                 y_train)
  acc = accuracy_fn(y_true = y_train,
                    y_pred = y_pred)
  
  # 3. Optimizer zero grad 
  optimizer.zero_grad()

  # 4. Loss backwards
  loss.backward()

  # 5. Optimizer step 
  optimizer.step() 

  ### Testing 
  model_0.eval()
  with torch.inference_mode():
    # 1. Forward pass
    test_logits = model_0(X_test).squeeze()
    test_pred = torch.round(torch.sigmoid(test_logits))
    # 2. Caculate loss/accuracy
    test_loss = loss_fn(test_logits,
                        y_test)
    test_acc = accuracy_fn(y_true = y_test,
                           y_pred = test_pred)
  
  if epoch % 10 == 0:
    print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test loss: {test_loss:.5f}, Test acc: {test_acc:.2f}%")

# 输出结果
Epoch: 0 | Loss: 0.70758, Accuracy: 50.25% | Test loss: 0.70294, Test acc: 56.00%
Epoch: 10 | Loss: 0.70192, Accuracy: 50.25% | Test loss: 0.69895, Test acc: 52.50%
Epoch: 20 | Loss: 0.69892, Accuracy: 50.00% | Test loss: 0.69713, Test acc: 50.00%
Epoch: 30 | Loss: 0.69716, Accuracy: 49.75% | Test loss: 0.69626, Test acc: 51.50%
Epoch: 40 | Loss: 0.69603, Accuracy: 49.75% | Test loss: 0.69582, Test acc: 51.50%
Epoch: 50 | Loss: 0.69527, Accuracy: 49.75% | Test loss: 0.69561, Test acc: 51.00%
Epoch: 60 | Loss: 0.69474, Accuracy: 49.25% | Test loss: 0.69551, Test acc: 52.50%
Epoch: 70 | Loss: 0.69435, Accuracy: 49.00% | Test loss: 0.69547, Test acc: 51.00%
Epoch: 80 | Loss: 0.69406, Accuracy: 49.75% | Test loss: 0.69545, Test acc: 51.00%
Epoch: 90 | Loss: 0.69384, Accuracy: 49.25% | Test loss: 0.69545, Test acc: 51.50%

看到这了,给个赞呗~

相关推荐
趣知岛4 分钟前
AI是否能代替从业者
人工智能
allan bull22 分钟前
在节日中寻找平衡:圣诞的欢乐与传统节日的温情
人工智能·学习·算法·职场和发展·生活·求职招聘·节日
土豆125024 分钟前
程序员约会指南:从代码到爱情的完美编译
人工智能
Coder_Boy_26 分钟前
SpringAI与LangChain4j的智能应用-(实践篇2)
人工智能·springboot·aiops·langchain4j
love530love29 分钟前
【笔记】ComfyUI “OSError: [WinError 38] 已到文件结尾” 报错解决方案
人工智能·windows·python·aigc·comfyui·winerror 38
咕噜企业分发小米40 分钟前
腾讯云向量数据库HNSW索引如何更新?
人工智能·算法·腾讯云
AI即插即用44 分钟前
即插即用系列 | TGRS 2025 MGAM:面向遥感微小目标检测的多尺度高斯注意力机制
图像处理·人工智能·深度学习·目标检测·计算机视觉·视觉检测
cqbzcsq1 小时前
蛋白质功能预测模型DAMPE论文阅读报告
论文阅读·人工智能·python·深度学习·生物信息学
转转技术团队1 小时前
回收团队基于Cursor集成MCP的智能代码修复提示词生成实践
人工智能·python·程序员
质变科技AI就绪数据云1 小时前
AI Data独角兽猎手的12个预测(2026)
人工智能·向量数据库·ai agent