机器学习 - 神经网络中的训练模型

接着上一篇机器学习-创建一个PyTorch classification model做进一步陈述。

训练模型的步骤:

  1. Forward pass : The model goes through all of the training data once, performing its forward() function calculations (model(x_train))
  2. Calculate the loss : 使用 loss = loss_fn(y_pred, y_train)
  3. Zero gradients : optimizer.zero_grad()
  4. Perform backpropagation on the loss : Computes the gradient of the loss with respect for every model parameter to be updated (each parameter with requires_grad=True). This is known as backpropagation, hence "backwards" (loss.backward())
  5. Step the optimizer (gradient descent) : Update the parameters with requires_grad = True with respect to the loss gradients in order to improve them (optimizer.step())

python 复制代码
# View the first 5 outputs of the forward pass on the test data
y_logits = model_0(X_test.to("cpu"))[:5]
print(y_logits)

# Use sigmoid on model logits 
y_pred_probs = torch.sigmoid(y_logits)
print(y_pred_probs)

# Find the predicted labels (round the prediction probabilities)
y_preds = torch.round(y_pred_probs)

# In full 
y_pred_labels = torch.round(torch.sigmoid(model_0(X_test))[:5])

# Check for equality 
print(torch.eq(y_preds.squeeze(), y_pred_labels.squeeze()))

print(y_preds.squeeze())

# 结果如下
tensor([[ 0.3798],
        [ 0.2257],
        [ 0.4383],
        [ 0.3647],
        [-0.1101]], grad_fn=<SliceBackward0>)
tensor([[0.5938],
        [0.5562],
        [0.6078],
        [0.5902],
        [0.4725]], grad_fn=<SigmoidBackward0>)
tensor([True, True, True, True, True])
tensor([1., 1., 1., 1., 0.], grad_fn=<SqueezeBackward0>)

The use of the sigmoid activation function is often only for binary classification logits.

The use of the sigmoid activation function is not required when passing the model's raw outputs to the nn.BCEWithLogitsLoss (the "logits" in logits loss is because it works on the model's raw logits output), this is because it has a sigmoid function built-in.


创建 training 和 testing loop

python 复制代码
# 创建一个 loss function
loss_fn = nn.BCEWithLogitsLoss()

def accuracy_fn(y_true, y_pred):
  correct = torch.eq(y_true, y_pred).sum().item()
  acc = (correct / len(y_pred)) * 100
  return acc

# Build a train and test loop 

torch.manual_seed(42)

# Set the number of epochs
epochs = 100

# Put data into device
X_train, y_train = X_train.to("cpu"), y_train.to("cpu")
X_test, y_test = X_test.to("cpu"), y_test.to("cpu")

# Build training and evaluation loop
for epoch in range(epochs):
  ### Training
  model_0.train()

  # 1. Forward pass (model outputs raw logits)
  y_logits = model_0(X_train).squeeze()
  y_pred = torch.round(torch.sigmoid(y_logits)) # turn logits -> pred probs -> pred labls

  # 2. Calculate loss/accuracy
  loss = loss_fn(y_logits,
                 y_train)
  acc = accuracy_fn(y_true = y_train,
                    y_pred = y_pred)
  
  # 3. Optimizer zero grad 
  optimizer.zero_grad()

  # 4. Loss backwards
  loss.backward()

  # 5. Optimizer step 
  optimizer.step() 

  ### Testing 
  model_0.eval()
  with torch.inference_mode():
    # 1. Forward pass
    test_logits = model_0(X_test).squeeze()
    test_pred = torch.round(torch.sigmoid(test_logits))
    # 2. Caculate loss/accuracy
    test_loss = loss_fn(test_logits,
                        y_test)
    test_acc = accuracy_fn(y_true = y_test,
                           y_pred = test_pred)
  
  if epoch % 10 == 0:
    print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test loss: {test_loss:.5f}, Test acc: {test_acc:.2f}%")

# 输出结果
Epoch: 0 | Loss: 0.70758, Accuracy: 50.25% | Test loss: 0.70294, Test acc: 56.00%
Epoch: 10 | Loss: 0.70192, Accuracy: 50.25% | Test loss: 0.69895, Test acc: 52.50%
Epoch: 20 | Loss: 0.69892, Accuracy: 50.00% | Test loss: 0.69713, Test acc: 50.00%
Epoch: 30 | Loss: 0.69716, Accuracy: 49.75% | Test loss: 0.69626, Test acc: 51.50%
Epoch: 40 | Loss: 0.69603, Accuracy: 49.75% | Test loss: 0.69582, Test acc: 51.50%
Epoch: 50 | Loss: 0.69527, Accuracy: 49.75% | Test loss: 0.69561, Test acc: 51.00%
Epoch: 60 | Loss: 0.69474, Accuracy: 49.25% | Test loss: 0.69551, Test acc: 52.50%
Epoch: 70 | Loss: 0.69435, Accuracy: 49.00% | Test loss: 0.69547, Test acc: 51.00%
Epoch: 80 | Loss: 0.69406, Accuracy: 49.75% | Test loss: 0.69545, Test acc: 51.00%
Epoch: 90 | Loss: 0.69384, Accuracy: 49.25% | Test loss: 0.69545, Test acc: 51.50%

看到这了,给个赞呗~

相关推荐
Dingdangcat862 小时前
中药材图像识别与分类 RetinaNet-R101-FPN模型详解
人工智能·数据挖掘
老蒋新思维2 小时前
创客匠人视角:智能体重构创始人 IP,知识变现从 “内容售卖” 到 “能力复制” 的革命
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
Honmaple2 小时前
Spring AI 2.x 发布:全面拥抱 Java 21,Redis 史诗级增强
java·人工智能·spring
古城小栈2 小时前
区块链 + AI:医疗诊断模型存证上链技术实践与探索
人工智能·区块链
丹宇码农2 小时前
Index-TTS2 从零到一:完整安装与核心使用教程
人工智能·ai·tts
AKAMAI3 小时前
Akamai Cloud客户案例 | IPPRA的简洁、经济、易用的云计算服务
人工智能·云计算
Exploring3 小时前
从零搭建使用 Open-AutoGML 搜索附近的美食
android·人工智能
阿里云大数据AI技术3 小时前
在 DataWorks 中一键部署大模型,即刻用于数据集成和数据开发
人工智能
AI科技星3 小时前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活