机器学习 - 神经网络中的训练模型

接着上一篇机器学习-创建一个PyTorch classification model做进一步陈述。

训练模型的步骤:

  1. Forward pass : The model goes through all of the training data once, performing its forward() function calculations (model(x_train))
  2. Calculate the loss : 使用 loss = loss_fn(y_pred, y_train)
  3. Zero gradients : optimizer.zero_grad()
  4. Perform backpropagation on the loss : Computes the gradient of the loss with respect for every model parameter to be updated (each parameter with requires_grad=True). This is known as backpropagation, hence "backwards" (loss.backward())
  5. Step the optimizer (gradient descent) : Update the parameters with requires_grad = True with respect to the loss gradients in order to improve them (optimizer.step())

python 复制代码
# View the first 5 outputs of the forward pass on the test data
y_logits = model_0(X_test.to("cpu"))[:5]
print(y_logits)

# Use sigmoid on model logits 
y_pred_probs = torch.sigmoid(y_logits)
print(y_pred_probs)

# Find the predicted labels (round the prediction probabilities)
y_preds = torch.round(y_pred_probs)

# In full 
y_pred_labels = torch.round(torch.sigmoid(model_0(X_test))[:5])

# Check for equality 
print(torch.eq(y_preds.squeeze(), y_pred_labels.squeeze()))

print(y_preds.squeeze())

# 结果如下
tensor([[ 0.3798],
        [ 0.2257],
        [ 0.4383],
        [ 0.3647],
        [-0.1101]], grad_fn=<SliceBackward0>)
tensor([[0.5938],
        [0.5562],
        [0.6078],
        [0.5902],
        [0.4725]], grad_fn=<SigmoidBackward0>)
tensor([True, True, True, True, True])
tensor([1., 1., 1., 1., 0.], grad_fn=<SqueezeBackward0>)

The use of the sigmoid activation function is often only for binary classification logits.

The use of the sigmoid activation function is not required when passing the model's raw outputs to the nn.BCEWithLogitsLoss (the "logits" in logits loss is because it works on the model's raw logits output), this is because it has a sigmoid function built-in.


创建 training 和 testing loop

python 复制代码
# 创建一个 loss function
loss_fn = nn.BCEWithLogitsLoss()

def accuracy_fn(y_true, y_pred):
  correct = torch.eq(y_true, y_pred).sum().item()
  acc = (correct / len(y_pred)) * 100
  return acc

# Build a train and test loop 

torch.manual_seed(42)

# Set the number of epochs
epochs = 100

# Put data into device
X_train, y_train = X_train.to("cpu"), y_train.to("cpu")
X_test, y_test = X_test.to("cpu"), y_test.to("cpu")

# Build training and evaluation loop
for epoch in range(epochs):
  ### Training
  model_0.train()

  # 1. Forward pass (model outputs raw logits)
  y_logits = model_0(X_train).squeeze()
  y_pred = torch.round(torch.sigmoid(y_logits)) # turn logits -> pred probs -> pred labls

  # 2. Calculate loss/accuracy
  loss = loss_fn(y_logits,
                 y_train)
  acc = accuracy_fn(y_true = y_train,
                    y_pred = y_pred)
  
  # 3. Optimizer zero grad 
  optimizer.zero_grad()

  # 4. Loss backwards
  loss.backward()

  # 5. Optimizer step 
  optimizer.step() 

  ### Testing 
  model_0.eval()
  with torch.inference_mode():
    # 1. Forward pass
    test_logits = model_0(X_test).squeeze()
    test_pred = torch.round(torch.sigmoid(test_logits))
    # 2. Caculate loss/accuracy
    test_loss = loss_fn(test_logits,
                        y_test)
    test_acc = accuracy_fn(y_true = y_test,
                           y_pred = test_pred)
  
  if epoch % 10 == 0:
    print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test loss: {test_loss:.5f}, Test acc: {test_acc:.2f}%")

# 输出结果
Epoch: 0 | Loss: 0.70758, Accuracy: 50.25% | Test loss: 0.70294, Test acc: 56.00%
Epoch: 10 | Loss: 0.70192, Accuracy: 50.25% | Test loss: 0.69895, Test acc: 52.50%
Epoch: 20 | Loss: 0.69892, Accuracy: 50.00% | Test loss: 0.69713, Test acc: 50.00%
Epoch: 30 | Loss: 0.69716, Accuracy: 49.75% | Test loss: 0.69626, Test acc: 51.50%
Epoch: 40 | Loss: 0.69603, Accuracy: 49.75% | Test loss: 0.69582, Test acc: 51.50%
Epoch: 50 | Loss: 0.69527, Accuracy: 49.75% | Test loss: 0.69561, Test acc: 51.00%
Epoch: 60 | Loss: 0.69474, Accuracy: 49.25% | Test loss: 0.69551, Test acc: 52.50%
Epoch: 70 | Loss: 0.69435, Accuracy: 49.00% | Test loss: 0.69547, Test acc: 51.00%
Epoch: 80 | Loss: 0.69406, Accuracy: 49.75% | Test loss: 0.69545, Test acc: 51.00%
Epoch: 90 | Loss: 0.69384, Accuracy: 49.25% | Test loss: 0.69545, Test acc: 51.50%

看到这了,给个赞呗~

相关推荐
千宇宙航1 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董1 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco1 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
jndingxin4 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦4 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988945 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03275 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿6 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手6 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志6 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc