机器学习 - 神经网络中的训练模型

接着上一篇机器学习-创建一个PyTorch classification model做进一步陈述。

训练模型的步骤:

  1. Forward pass : The model goes through all of the training data once, performing its forward() function calculations (model(x_train))
  2. Calculate the loss : 使用 loss = loss_fn(y_pred, y_train)
  3. Zero gradients : optimizer.zero_grad()
  4. Perform backpropagation on the loss : Computes the gradient of the loss with respect for every model parameter to be updated (each parameter with requires_grad=True). This is known as backpropagation, hence "backwards" (loss.backward())
  5. Step the optimizer (gradient descent) : Update the parameters with requires_grad = True with respect to the loss gradients in order to improve them (optimizer.step())

python 复制代码
# View the first 5 outputs of the forward pass on the test data
y_logits = model_0(X_test.to("cpu"))[:5]
print(y_logits)

# Use sigmoid on model logits 
y_pred_probs = torch.sigmoid(y_logits)
print(y_pred_probs)

# Find the predicted labels (round the prediction probabilities)
y_preds = torch.round(y_pred_probs)

# In full 
y_pred_labels = torch.round(torch.sigmoid(model_0(X_test))[:5])

# Check for equality 
print(torch.eq(y_preds.squeeze(), y_pred_labels.squeeze()))

print(y_preds.squeeze())

# 结果如下
tensor([[ 0.3798],
        [ 0.2257],
        [ 0.4383],
        [ 0.3647],
        [-0.1101]], grad_fn=<SliceBackward0>)
tensor([[0.5938],
        [0.5562],
        [0.6078],
        [0.5902],
        [0.4725]], grad_fn=<SigmoidBackward0>)
tensor([True, True, True, True, True])
tensor([1., 1., 1., 1., 0.], grad_fn=<SqueezeBackward0>)

The use of the sigmoid activation function is often only for binary classification logits.

The use of the sigmoid activation function is not required when passing the model's raw outputs to the nn.BCEWithLogitsLoss (the "logits" in logits loss is because it works on the model's raw logits output), this is because it has a sigmoid function built-in.


创建 training 和 testing loop

python 复制代码
# 创建一个 loss function
loss_fn = nn.BCEWithLogitsLoss()

def accuracy_fn(y_true, y_pred):
  correct = torch.eq(y_true, y_pred).sum().item()
  acc = (correct / len(y_pred)) * 100
  return acc

# Build a train and test loop 

torch.manual_seed(42)

# Set the number of epochs
epochs = 100

# Put data into device
X_train, y_train = X_train.to("cpu"), y_train.to("cpu")
X_test, y_test = X_test.to("cpu"), y_test.to("cpu")

# Build training and evaluation loop
for epoch in range(epochs):
  ### Training
  model_0.train()

  # 1. Forward pass (model outputs raw logits)
  y_logits = model_0(X_train).squeeze()
  y_pred = torch.round(torch.sigmoid(y_logits)) # turn logits -> pred probs -> pred labls

  # 2. Calculate loss/accuracy
  loss = loss_fn(y_logits,
                 y_train)
  acc = accuracy_fn(y_true = y_train,
                    y_pred = y_pred)
  
  # 3. Optimizer zero grad 
  optimizer.zero_grad()

  # 4. Loss backwards
  loss.backward()

  # 5. Optimizer step 
  optimizer.step() 

  ### Testing 
  model_0.eval()
  with torch.inference_mode():
    # 1. Forward pass
    test_logits = model_0(X_test).squeeze()
    test_pred = torch.round(torch.sigmoid(test_logits))
    # 2. Caculate loss/accuracy
    test_loss = loss_fn(test_logits,
                        y_test)
    test_acc = accuracy_fn(y_true = y_test,
                           y_pred = test_pred)
  
  if epoch % 10 == 0:
    print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test loss: {test_loss:.5f}, Test acc: {test_acc:.2f}%")

# 输出结果
Epoch: 0 | Loss: 0.70758, Accuracy: 50.25% | Test loss: 0.70294, Test acc: 56.00%
Epoch: 10 | Loss: 0.70192, Accuracy: 50.25% | Test loss: 0.69895, Test acc: 52.50%
Epoch: 20 | Loss: 0.69892, Accuracy: 50.00% | Test loss: 0.69713, Test acc: 50.00%
Epoch: 30 | Loss: 0.69716, Accuracy: 49.75% | Test loss: 0.69626, Test acc: 51.50%
Epoch: 40 | Loss: 0.69603, Accuracy: 49.75% | Test loss: 0.69582, Test acc: 51.50%
Epoch: 50 | Loss: 0.69527, Accuracy: 49.75% | Test loss: 0.69561, Test acc: 51.00%
Epoch: 60 | Loss: 0.69474, Accuracy: 49.25% | Test loss: 0.69551, Test acc: 52.50%
Epoch: 70 | Loss: 0.69435, Accuracy: 49.00% | Test loss: 0.69547, Test acc: 51.00%
Epoch: 80 | Loss: 0.69406, Accuracy: 49.75% | Test loss: 0.69545, Test acc: 51.00%
Epoch: 90 | Loss: 0.69384, Accuracy: 49.25% | Test loss: 0.69545, Test acc: 51.50%

看到这了,给个赞呗~

相关推荐
非著名架构师6 分钟前
团雾、结冰、大风——高速公路的“隐形杀手”:智慧气象预警如何为您的路网安全保驾护航
人工智能·新能源风光提高精度·疾风气象大模型4.0·疾风气象大模型·风光功率预测
IT_陈寒14 分钟前
Redis深度优化:10个让你的QPS提升50%的关键配置解析
前端·人工智能·后端
2501_9411429316 分钟前
5G与边缘计算结合在智能物流系统中的高效调度与实时监控应用研究
人工智能
2501_9411444221 分钟前
边缘计算与人工智能在智能制造生产线优化与故障预测中的应用研究
人工智能·边缘计算·制造
三寸33741 分钟前
硬刚GPT 5.1,Grok 4.1来了,所有用户免费使用!
人工智能·ai·ai编程
苍何1 小时前
Gemini3 强势来袭,这次前端真的死了。。。
人工智能
悟空CRM服务1 小时前
我用一条命令部署了完整CRM系统!
java·人工智能·开源·开源软件
组合缺一1 小时前
Solon AI 开发学习 - 1导引
java·人工智能·学习·ai·openai·solon
A-刘晨阳1 小时前
《华为数据之道》发行五周年暨《数据空间探索与实践》新书发布会召开,共探AI时代数据治理新路径
人工智能·华为
人工小情绪1 小时前
大模型运行的基本机制
人工智能