机器学习 - 神经网络中的训练模型

接着上一篇机器学习-创建一个PyTorch classification model做进一步陈述。

训练模型的步骤:

  1. Forward pass : The model goes through all of the training data once, performing its forward() function calculations (model(x_train))
  2. Calculate the loss : 使用 loss = loss_fn(y_pred, y_train)
  3. Zero gradients : optimizer.zero_grad()
  4. Perform backpropagation on the loss : Computes the gradient of the loss with respect for every model parameter to be updated (each parameter with requires_grad=True). This is known as backpropagation, hence "backwards" (loss.backward())
  5. Step the optimizer (gradient descent) : Update the parameters with requires_grad = True with respect to the loss gradients in order to improve them (optimizer.step())

python 复制代码
# View the first 5 outputs of the forward pass on the test data
y_logits = model_0(X_test.to("cpu"))[:5]
print(y_logits)

# Use sigmoid on model logits 
y_pred_probs = torch.sigmoid(y_logits)
print(y_pred_probs)

# Find the predicted labels (round the prediction probabilities)
y_preds = torch.round(y_pred_probs)

# In full 
y_pred_labels = torch.round(torch.sigmoid(model_0(X_test))[:5])

# Check for equality 
print(torch.eq(y_preds.squeeze(), y_pred_labels.squeeze()))

print(y_preds.squeeze())

# 结果如下
tensor([[ 0.3798],
        [ 0.2257],
        [ 0.4383],
        [ 0.3647],
        [-0.1101]], grad_fn=<SliceBackward0>)
tensor([[0.5938],
        [0.5562],
        [0.6078],
        [0.5902],
        [0.4725]], grad_fn=<SigmoidBackward0>)
tensor([True, True, True, True, True])
tensor([1., 1., 1., 1., 0.], grad_fn=<SqueezeBackward0>)

The use of the sigmoid activation function is often only for binary classification logits.

The use of the sigmoid activation function is not required when passing the model's raw outputs to the nn.BCEWithLogitsLoss (the "logits" in logits loss is because it works on the model's raw logits output), this is because it has a sigmoid function built-in.


创建 training 和 testing loop

python 复制代码
# 创建一个 loss function
loss_fn = nn.BCEWithLogitsLoss()

def accuracy_fn(y_true, y_pred):
  correct = torch.eq(y_true, y_pred).sum().item()
  acc = (correct / len(y_pred)) * 100
  return acc

# Build a train and test loop 

torch.manual_seed(42)

# Set the number of epochs
epochs = 100

# Put data into device
X_train, y_train = X_train.to("cpu"), y_train.to("cpu")
X_test, y_test = X_test.to("cpu"), y_test.to("cpu")

# Build training and evaluation loop
for epoch in range(epochs):
  ### Training
  model_0.train()

  # 1. Forward pass (model outputs raw logits)
  y_logits = model_0(X_train).squeeze()
  y_pred = torch.round(torch.sigmoid(y_logits)) # turn logits -> pred probs -> pred labls

  # 2. Calculate loss/accuracy
  loss = loss_fn(y_logits,
                 y_train)
  acc = accuracy_fn(y_true = y_train,
                    y_pred = y_pred)
  
  # 3. Optimizer zero grad 
  optimizer.zero_grad()

  # 4. Loss backwards
  loss.backward()

  # 5. Optimizer step 
  optimizer.step() 

  ### Testing 
  model_0.eval()
  with torch.inference_mode():
    # 1. Forward pass
    test_logits = model_0(X_test).squeeze()
    test_pred = torch.round(torch.sigmoid(test_logits))
    # 2. Caculate loss/accuracy
    test_loss = loss_fn(test_logits,
                        y_test)
    test_acc = accuracy_fn(y_true = y_test,
                           y_pred = test_pred)
  
  if epoch % 10 == 0:
    print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}% | Test loss: {test_loss:.5f}, Test acc: {test_acc:.2f}%")

# 输出结果
Epoch: 0 | Loss: 0.70758, Accuracy: 50.25% | Test loss: 0.70294, Test acc: 56.00%
Epoch: 10 | Loss: 0.70192, Accuracy: 50.25% | Test loss: 0.69895, Test acc: 52.50%
Epoch: 20 | Loss: 0.69892, Accuracy: 50.00% | Test loss: 0.69713, Test acc: 50.00%
Epoch: 30 | Loss: 0.69716, Accuracy: 49.75% | Test loss: 0.69626, Test acc: 51.50%
Epoch: 40 | Loss: 0.69603, Accuracy: 49.75% | Test loss: 0.69582, Test acc: 51.50%
Epoch: 50 | Loss: 0.69527, Accuracy: 49.75% | Test loss: 0.69561, Test acc: 51.00%
Epoch: 60 | Loss: 0.69474, Accuracy: 49.25% | Test loss: 0.69551, Test acc: 52.50%
Epoch: 70 | Loss: 0.69435, Accuracy: 49.00% | Test loss: 0.69547, Test acc: 51.00%
Epoch: 80 | Loss: 0.69406, Accuracy: 49.75% | Test loss: 0.69545, Test acc: 51.00%
Epoch: 90 | Loss: 0.69384, Accuracy: 49.25% | Test loss: 0.69545, Test acc: 51.50%

看到这了,给个赞呗~

相关推荐
说私域几秒前
社群经济视域下智能名片链动2+1模式商城小程序的商业价值重构
人工智能·小程序·重构·开源
NAGNIP4 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP4 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴5 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维5 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者6 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai6 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃6 小时前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb6 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU6 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习