【AI赋能前端研发】落地全流程分析

大家好,我是LV。

都已经24年了,早已过了狂热追捧AI的时候,我现在看到那些 爆炸性的 的内容早就麻木了。

真正能脚踏实地,通过AI赋能实际工作流中,才是牛逼。

笔者未来很长一段时间将聚焦 AI赋能工作流

本篇讨论AI赋能前端研发领域 ,这个话题也将会是 一系列的篇章,会总结笔者从 0 ~ 1 使用 AI 赋能前端的经验和探索历程。

分享出来,抛砖引玉,希望跟感兴趣的小伙伴有更多深入的交流,探索AI赋能的更多可能性。

欢迎大家点赞收藏防失联,不多说,开始。

市场现状

先说结论,从我下场实践,以及目前了解到的前端AI现状来看:

"目前还处在早期的阶段,前端未死,AI赋能大有可为!"

市面上的AI赋能前端案例,抽取部分代表性的,总结了下:

对话生成页面

  • 直接生成整个网站,如 Dora,主打生成官网

详见:www.dora.run/

  • Vercel V0,生成 React 组件

详见:v0.dev/

图片生成页面

  • ScreenShotToCode,截图转换为页面,包括html,react等代码,Star高的离谱。

详见:github.com/abi/screens...

  • draw-a-ui,将原型草图转换为代码

详见:github.com/SawyerHood/...

辅助性的代码生成工具

  • GitHub Copilot,Github做的辅助编程工具,十分推荐,官方也十分有自信,从slogan可以看出:The world's most widely adopted AI developer tool.(世界上使用最广泛的AI开发工具)

详见:github.com/features/co...

  • GPT4、Claude3 等通用 LLM:用他们辅助编程也是不错的,比如当成搜索引擎来用。

如上,确实枝繁叶茂,百花齐放。

但是,用这些产品一概而论来替代前端,却还远远不够:

一、从广度来看

如今是 大前端,不是单纯的"页面仔"。

还包括:前端工程化、前端框架、PC端、H5、原生移动端、可视化、跨平台(Taro、Uni-App)、小程序、Node伪全栈等等。

用几个AI生成页面产品来表达:"前端已死",还是有点太笼统了。

从深度来看

确实,前端大部分人的工作都是在写页面 ,那些AI生成页面的产品真的能够取代前端写页面这部分的工作吗?

某些写页面的工作可以,比如一次性的活动界面,无需二次迭代的静态页面等。

但是绝大部分是不能。

要知道,市面上的AI生页面产品,大都也是通用型的,它不会根据你公司的工作规范或者私有化的组件库来生成页面。


从广度和深度来看,AI赋能前端,目前阶段还没有统一的解决方案。

因此,我们都是各自场景下的AI赋能探索者。

AI赋能金字塔模型

笔者总结了一个AI赋能工作流的模型---金字塔模型,AI赋能前端同样也适用。

如上图,当做一件复杂的事情时,我们会拆分成各个环节,每个环节或许还能拆分为多个步骤。

AI赋能同样如此,总结起来:基于一个规范工作流,拆分为功能职责单一的环节或者步骤,尝试用AI针对每个环节/步骤进行赋能验证。

其中有2点需要注意一下:

1、2/8原则。

赋能20%的的重要环节,或许能提升整体80%的效能,因此需要评估一下AI赋能每个环节/步骤的优先级,优先赋能性价比最高的环节/步骤。

2、拆分颗粒度。

不拆分:会导致AI在理解复杂任务的时候容易"迷惑"。

拆分过度:容易简单问题复杂化。

前端工作流拆分

基于AI赋能金字塔的理论,我们来拆分前端的工作流。

不同公司的开发规范可能会不一样,笔者以自己公司的规范为例,大家可以做个参考。

AI赋能的金字塔如下:

共分为2个环节,4个步骤

一、业务组件开发

1.1 从 0 ~ 1 开发业务组件

1.2 从 1 ~ 100 迭代业务组件

二、对接联调

2.1 从 0 ~ 1 对接联调

2.2 从 1 ~ 100 联调迭代

其中,重点放在 业务组件开发 环节的 从 0 ~ 1 开发业务组件步骤。

因为这个环节占据了我们整个页面开发流程80%的工作,属于重点赋能对象。

或许可以实现:只花整体20%的时间就能够完成80%的工作量。

确定各环节(步骤)赋能指标

如何评判某个环节/步骤的AI赋能是否有效果?

可以针对每个步骤/环节设置检测指标,如:效率、质量方面的指标,对比赋能前后的差异。

AI赋能前端开发 的工作流来看,包含2大核心指标:

1、质量,包括功能质量和代码质量。

进行功能对比测试、业务组件的单元测试 & 集成测试 & 代码Review等。

2、效率,对比开发同样质量的代码,所需要的时间。

总结

  • 针对目前市场前端领域的AI产品,从广度和深度分析来看:前端未死,AI赋能前端大有可为。

  • AI赋能金字塔模型:基于一个规范工作流,拆分为功能职责单一的环节或者步骤,尝试用AI针对每个环节/步骤进行赋能验证。

  • 2/8原则:赋能20%的环节或许能提升整体80%的效能


后续篇章,笔者将从 0 ~ 1 开发业务组件1 ~ 100 迭代业务组件0 ~ 1 对接联调等角度进行分析。


AI赋能,共勉。

相关推荐
热爱编程的小曾10 分钟前
sqli-labs靶场 less 8
前端·数据库·less
gongzemin22 分钟前
React 和 Vue3 在事件传递的区别
前端·vue.js·react.js
Apifox34 分钟前
如何在 Apifox 中通过 Runner 运行包含云端数据库连接配置的测试场景
前端·后端·ci/cd
树上有只程序猿1 小时前
后端思维之高并发处理方案
前端
庸俗今天不摸鱼2 小时前
【万字总结】前端全方位性能优化指南(十)——自适应优化系统、遗传算法调参、Service Worker智能降级方案
前端·性能优化·webassembly
黄毛火烧雪下2 小时前
React Context API 用于在组件树中共享全局状态
前端·javascript·react.js
Apifox2 小时前
如何在 Apifox 中通过 CLI 运行包含云端数据库连接配置的测试场景
前端·后端·程序员
一张假钞2 小时前
Firefox默认在新标签页打开收藏栏链接
前端·firefox
高达可以过山车不行2 小时前
Firefox账号同步书签不一致(火狐浏览器书签同步不一致)
前端·firefox
m0_593758102 小时前
firefox 136.0.4版本离线安装MarkDown插件
前端·firefox