jupyter操作LSTM模型,词向量模型理解

1.jupyter没有torch模块,参考下面链接的解决办法

【jupyter notebook安装配置教程,导入pytorch解决No module named torch-哔哩哔哩】 https://b23.tv/jYGvyVR

2.jupyter中没有某一模块怎么办,可以用pycharm打开一个项目,在该项目中下载所需要的模块,然后jupyter notebook打开这个项目,在同路径下打开ipython文件。

3.LSTM模型的输入,输出与与注意事项。

模型构建,最基本的是五个参数 input_dim 输入维度,即输入的特征的个数 hidden_dim 隐藏层特征的维度 num_layers lstm的连结个数 output_dim 输出层的维度,预测即为1,分类则为分类的个数 num_epochs 迭代的次数,每次计算损失函数,反向回归,优化参数,得出新的预测值,再计算损失函数

python 复制代码
input_dim = 1
hidden_dim =72
num_layers = 3
output_dim = 1
num_epochs = 100
# LSTM 模型定义
class LSTM(nn.Module):
    def __init__(self, input_dim, hidden_dim,num_layers,output_dim):
        super(LSTM, self).__init__()
        self.hidden_dim = hidden_dim
        self.num_layers =num_layers
        self.lstm = nn.LSTM(input_dim, hidden_dim,num_layers,batch_first=True)
        # 全连接层
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        h0=torch.zeros(self.num_layers,x.size(0),self.hidden_dim).requires_grad_()
        c0=torch.zeros(self.num_layers,x.size(0),self.hidden_dim).requires_grad_()
        out,(hn,cn)=self.lstm(x,(h0.detach(),c0.detach()))
        out = self.fc(out[:,-1,:])
        return out
python 复制代码
model = LSTM(input_dim=input_dim,hidden_dim=hidden_dim,output_dim=output_dim,num_layers=num_layers)
criterion = torch.nn.MSELoss()
optimiser = torch.optim.Adam(model.parameters(),lr=0.01)
hist = np.zeros(num_epochs)
python 复制代码
import time
hist = np.zeros(num_epochs)
start_time = time.time()
lstm=[]
for t in range(num_epochs):
    y_train_pred = model(x_train)
    loss = criterion(y_train_pred,y_train_lstm)
    print('EPOCH',t,'MSE',loss.item())
    hist[t]=loss.item()
    optimiser.zero_grad()
    loss.backward()
    optimiser.step()
    
training_time = time.time()-start_time
print(training_time)

4.词向量模型理解

相关推荐
孤狼warrior14 小时前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
大哥手下留情14 小时前
Python火车票查询方法介绍
开发语言·python
努力毕业的小土博^_^14 小时前
【AI课程领学】第十二课 · 超参数设定与网络训练(课时1) 网络超参数设定:从“要调什么”到“怎么系统地调”(含 PyTorch 可复用模板)
人工智能·pytorch·python·深度学习·神经网络·机器学习
YMLT花岗岩15 小时前
Python学习之-函数-入门训练-在函数中修改全局变量
python·学习
花月mmc15 小时前
CanMV K230 波形识别——数据分析(2)
python·数据挖掘·数据分析·信号处理
Pith_15 小时前
模式识别与机器学习复习笔记(下-深度学习篇)
笔记·深度学习·机器学习
进击的小头15 小时前
传递函数与系统特性(核心数学工具)
python·算法·数学建模
小王努力学编程15 小时前
LangChain——AI应用开发框架(核心组件2)
linux·服务器·c++·人工智能·python·langchain·信号
shengMio15 小时前
周报——2026.1.19-1.25
深度学习·论文写作
高洁0115 小时前
数字孪生应用于特种设备领域的技术难点
人工智能·python·深度学习·机器学习·知识图谱