PointNet++点云处理原理

PointNet++点云处理原理

借鉴了多层神经网络的思想

pointnet要么是一个点,要么是所有点进行操作,就不会有局部上下文信息

pointnet++基本思想是迭代地应用到局部区域

1.多级别特征学习

2.旋转不变性

3.置换不变性

选取中心点centroid,通过pointnet学到这个小区域的全局特征

sampling采样:选取centroid (sample centroids)

grouping分组:以centroid为中心,选取局部的点 (group points by centroids)

PointNet:对分组内的点应用pointnet进行特征的学习 (apply PointNet on each point group)

以上过程加起来称作Set Abstraction

PointNet++层次化特征学习的架构

经过两个set abstraction 得到全局特征

分割用到了interpolate(插值),再进行拼接,拼接后再使用pointnet对每一个点进行分类,有点像图像中的encoder+decoder的结构

在PointNet++中,"interpolate"(插值)是一个关键的操作,尤其在它的特征传播(feature propagation)阶段中扮演着重要的角色。

PointNet++采用的插值方法主要用于特征传播阶段,以实现多尺度特征的融合和细节的恢复。在对点云进行分层采样和分组操作后,网络需要在解码阶段将低维度的特征映射回高维度的空间。这一过程中,插值方法就被用来估计非采样点的特征。

具体来说,PointNet++中的插值方法通常指的是最近邻插值或三线性插值:

  • 最近邻插值(Nearest Neighbor Interpolation):这种方法将某一点的特征值设置为其最近邻点的特征值。它简单且计算成本低,但可能不够平滑。
  • 三线性插值(Trilinear Interpolation):在三维空间中,这种方法基于周围点的特征值通过线性插值计算目标点的特征值,能够生成更平滑的特征映射。然而,点云数据的离散性质意味着这种方法需要适当的调整或替代方案。

实际中,PointNet++常用的是一种加权平均插值方法,其中权重基于点之间的空间距离。例如,在特征传播阶段,可以通过寻找每个上采样点在原始点云中的k个最近邻点,然后基于这些邻点的特征和它们与上采样点的距离,通过加权平均来估计上采样点的特征。

这种插值方法使得PointNet++能够有效地处理不同尺度的点云数据,同时保留更多的空间结构信息,提高了对复杂场景的识别和分类精度。

非均匀采样的密度

小卷积核会受到可变密度的影响,对点云来说,用小的kernel效果不一定好

MSG:同一区域拼接不同半径区域的特征,处理复杂度较高

MRG:不同级别的特征进行拼接

分类结果

分割结果

相关推荐
名为沙丁鱼的猫72910 分钟前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
bylander13 分钟前
【AI学习】几分钟了解一下Clawdbot
人工智能·智能体·智能体应用
香芋Yu23 分钟前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
小咖自动剪辑31 分钟前
Base64与图片互转工具增强版:一键编码/解码,支持多格式
人工智能·pdf·word·媒体
独自归家的兔33 分钟前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
一个处女座的程序猿34 分钟前
AI:解读Sam Altman与多位 AI 构建者对话—构建可落地的 AI—剖析 OpenAI Town Hall 与给创业者、产品/工程/安全团队的实用指南
人工智能
依依yyy34 分钟前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
海域云-罗鹏44 分钟前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
冬奇Lab1 小时前
深入理解 Claude Code:架构、上下文与工具系统
人工智能·ai编程
Up九五小庞1 小时前
本地部署 + Docker 容器化实战:中医舌诊 AI 项目 TongueDiagnosis 部署全记录-九五小庞
人工智能