PointNet++点云处理原理

PointNet++点云处理原理

借鉴了多层神经网络的思想

pointnet要么是一个点,要么是所有点进行操作,就不会有局部上下文信息

pointnet++基本思想是迭代地应用到局部区域

1.多级别特征学习

2.旋转不变性

3.置换不变性

选取中心点centroid,通过pointnet学到这个小区域的全局特征

sampling采样:选取centroid (sample centroids)

grouping分组:以centroid为中心,选取局部的点 (group points by centroids)

PointNet:对分组内的点应用pointnet进行特征的学习 (apply PointNet on each point group)

以上过程加起来称作Set Abstraction

PointNet++层次化特征学习的架构

经过两个set abstraction 得到全局特征

分割用到了interpolate(插值),再进行拼接,拼接后再使用pointnet对每一个点进行分类,有点像图像中的encoder+decoder的结构

在PointNet++中,"interpolate"(插值)是一个关键的操作,尤其在它的特征传播(feature propagation)阶段中扮演着重要的角色。

PointNet++采用的插值方法主要用于特征传播阶段,以实现多尺度特征的融合和细节的恢复。在对点云进行分层采样和分组操作后,网络需要在解码阶段将低维度的特征映射回高维度的空间。这一过程中,插值方法就被用来估计非采样点的特征。

具体来说,PointNet++中的插值方法通常指的是最近邻插值或三线性插值:

  • 最近邻插值(Nearest Neighbor Interpolation):这种方法将某一点的特征值设置为其最近邻点的特征值。它简单且计算成本低,但可能不够平滑。
  • 三线性插值(Trilinear Interpolation):在三维空间中,这种方法基于周围点的特征值通过线性插值计算目标点的特征值,能够生成更平滑的特征映射。然而,点云数据的离散性质意味着这种方法需要适当的调整或替代方案。

实际中,PointNet++常用的是一种加权平均插值方法,其中权重基于点之间的空间距离。例如,在特征传播阶段,可以通过寻找每个上采样点在原始点云中的k个最近邻点,然后基于这些邻点的特征和它们与上采样点的距离,通过加权平均来估计上采样点的特征。

这种插值方法使得PointNet++能够有效地处理不同尺度的点云数据,同时保留更多的空间结构信息,提高了对复杂场景的识别和分类精度。

非均匀采样的密度

小卷积核会受到可变密度的影响,对点云来说,用小的kernel效果不一定好

MSG:同一区域拼接不同半径区域的特征,处理复杂度较高

MRG:不同级别的特征进行拼接

分类结果

分割结果

相关推荐
while(努力):进步2 分钟前
人工智能与边缘计算结合在智能电网负荷预测与优化调度中的应用探索
人工智能·边缘计算
2501_941142132 分钟前
边缘计算与5G结合在智慧交通信号优化与实时路况预测中的创新应用
人工智能·5g·边缘计算
Alang11 分钟前
【LM-PDF】一个大模型时代的 PDF 极速预览方案是如何实现的?
前端·人工智能·后端
kupeThinkPoem1 小时前
代码生成工具Amazon CodeWhisperer介绍
人工智能
weixin79893765432...1 小时前
前端开发者如何拥抱 AI-Agent(科普)
人工智能·ai
晨非辰2 小时前
【数据结构初阶系列】归并排序全透视:从算法原理全分析到源码实战应用
运维·c语言·数据结构·c++·人工智能·python·深度学习
菠菠萝宝3 小时前
【Java手搓RAGFlow】-3- 用户认证与权限管理
java·开发语言·人工智能·llm·openai·qwen·rag
youngfengying4 小时前
《轻量化 Transformers:开启计算机视觉新篇》
人工智能·计算机视觉
搞科研的小刘选手6 小时前
【同济大学主办】第十一届能源资源与环境工程研究进展国际学术会议(ICAESEE 2025)
大数据·人工智能·能源·材质·材料工程·地理信息
MARS_AI_7 小时前
云蝠智能 VoiceAgent 2.0:全栈语音交互能力升级
人工智能·自然语言处理·交互·信息与通信·agi