数据分析 | pandas

主要数据结构:

Series:

Series 是一种类似于 Numpy 中一维数组的对象,它由一组任意类型的数据以及一组与之相关的数据标签(即索引)组成。

python 复制代码
import pandas as pd

print(pd.Series([2, 4, 6, 8]))
print(pd.Series([2, 4, 6, 8], index=['a', 'b', 'c', 'd']))
# 输出
# 0    2
# 1    4
# 2    6
# 3    8
# dtype: int64
# a    2
# b    4
# c    6
# d    8
# dtype: int64

还可以直接使用字典同时创建带有自定义数据标签的数据,pandas 会自动把字典的键作为数据标签,字典的值作为相对应的数据。

访问 Series 里的数据的方式,和 Python 里访问列表和字典元素的方式类似,也是使用中括号加数据标签的方式来获取里面的数据。

python 复制代码
import pandas as pd

s1 = pd.Series([2, 4, 6, 8])
s2 = pd.Series({'a': 2, 'b': 4, 'c': 6, 'd': 8})

print(s1[0])
#输出:2
print(s2['b'])
#输出:4

数学中的四则运算在 pandas 中都有一一对应的方法,它们的用法都是类似的:

python 复制代码
import pandas as pd

s1 = pd.Series({'辣条': 14, '面包': 7, '可乐': 8, '烤肠': 10})
s2 = pd.Series({'辣条': 20, '面包': 3, '雪碧': 13, '泡面': 6})

print(s2.sub(s1,fill_value=0))# fill_value 为数据缺失时的默认值

#输出:
#可乐    -8.0
#泡面     6.0
#烤肠   -10.0
#辣条     6.0
#雪碧    13.0
#面包    -4.0
#dtype: float64

DataFrame:

DataFrame 是二维数据

python 复制代码
import pandas as pd
#调用 pd.set_option() 使表格对齐显示
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)

df = pd.DataFrame({'辣条': [14, 20], '面包': [7, 3], '可乐': [8, 13], '烤肠': [10, 6]})
print(df)

#输出:
#    辣条   面包  可乐   烤肠
#0    14     7     8    10
#1    20     3    13     6

列的查改增删:

查看列:

python 复制代码
import pandas as pd

df = pd.DataFrame({'辣条': [14, 20], '面包': [7, 3], '可乐': [8, 13], '烤肠': [10, 6]})
print(df['可乐'])
#输出:
#0     8
#1    13
#Name: 可乐, dtype: int64
print(df[['可乐', '辣条']])
#输出:
#    可乐   辣条
#0     8    14
#1    13    20

修改列:

python 复制代码
df['可乐'] = [18, 23]
print(df)
#输出:
#    辣条   面包   可乐  烤肠
#0    14     7    18    10
#1    20     3    23     6

新增列:

python 复制代码
df['糖果'] = [3, 5]
print(df)
#输出:
#    辣条   面包  可乐   烤肠   糖果
#0    14     7     8    10     3
#1    20     3    13     6     5

删除列:

python 复制代码
df.drop('面包', axis=1, inplace=True)
print(df)
# 或者 print(df.drop('面包', axis=1))
#输出:
#    辣条   可乐  烤肠
#0    14     18    10
#1    20     23     6

读取表格文件进行分析:

数据筛选:

给数据打标签:

行的查改增删:

查看行:

python 复制代码
import pandas as pd

df = pd.DataFrame({'辣条': [14, 20], '面包': [7, 3], '可乐': [8, 13], '烤肠': [10, 6]})
print(df.loc[0])
#输出:
#辣条    14
#面包     7
#可乐     8
#烤肠    10
#Name: 0, dtype: int64

# 行分片
print(df.loc[0:1, '辣条'])

# 列分片
print(df.loc[0, '辣条':'可乐'])

# 同时分片
print(df.loc[0:1, '辣条':'可乐'])

#输出:
#0    14
#1    20
#Name: 辣条, dtype: int64

#辣条    14
#面包     7
#可乐     8
#Name: 0, dtype: int64

#    辣条   面包  可乐
#0    14     7     8
#1    20     3    13

除了比较常用的 loc 之外,还能使用 iloc。用法和 loc 一样,区别在于 loc 使用的参数是索引,而 iloc 的参数是位置,即第几行。

python 复制代码
import pandas as pd

data = {
  '辣条': [14, 20, 12, 15, 17],
  '面包': [7, 3, 8, 3, 9],
  '可乐': [8, 13, 23, 12, 19],
  '烤肠': [10, 6, 21, 24, 18]
}
df = pd.DataFrame(data, index=['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05'])
print(df.iloc[:3])  # :3 表示 0、1、2 前三个

#输出:
#             辣条   面包  可乐   烤肠
#2020-01-01    14     7     8    10
#2020-01-02    20     3    13     6
#2020-01-03    12     8    23    21

修改行:

python 复制代码
df.loc[0] = 1  # 第一行都改成 1
print(df)

#输出:
#    辣条   面包  可乐   烤肠
#0     1     1     1     1
#1    20     3    13     6

新增行:

python 复制代码
# 添加第三行,全为 1
df.loc[2] = 1
# 添加第四行,分别为 1 2 3 4
df.loc[3] = [1, 2, 3, 4]
print(df)

#输出:
#    辣条   面包  可乐   烤肠
#0    14     7     8    10
#1    20     3    13     6
#2     1     1     1     1
#3     1     2     3     4

删除行:

python 复制代码
df.drop(0, inplace=True)  # 删除第一行
print(df)
# 或者 print(df.drop(0))

数据清洗:

相关推荐
Ada大侦探1 小时前
新手小白学习Power BI第五弹--------产品分析以及产品毛利率报表、条件式标红、饼图、散点图
学习·数据分析·powerbi
IT·小灰灰3 小时前
AI学会理解物理法则:OpenAI Sora 2如何重塑视频生成新范式
人工智能·python·深度学习·机器学习·数据挖掘·音视频
LiYingL4 小时前
PictSure:通过视觉嵌入功能挑战 _Few-Shot _分类的新方法
人工智能·分类·数据挖掘
BioRunYiXue5 小时前
双荧光素酶报告基因实验
java·运维·服务器·数据库·人工智能·数据挖掘·eclipse
_codemonster6 小时前
AI大模型入门到实战系列(六)文本分类
人工智能·分类·数据挖掘
慧都小妮子7 小时前
实时图形工具包GLG Toolkit:工业领域HMI数据可视化的优选产品
信息可视化·数据挖掘·数据分析
零小陈上(shouhou6668889)7 小时前
水稻病害检测(YOLO数据集,多分类,稻瘟病、纹枯病、褐斑病、枯心病、霜霉病、水稻细菌性条纹斑病、稻苞虫)
yolo·分类·数据挖掘
IT·小灰灰7 小时前
当AI开口说话:可灵视频2.6如何终结“默片时代“重塑视听共生
大数据·人工智能·python·深度学习·数据挖掘·开源·音视频
nju_spy7 小时前
复杂结构数据挖掘(八)社交网络挖掘:标签传播、社区发现、影响力传播
人工智能·数据挖掘·谱聚类·社交网络挖掘·图标签转播·迭代改进·社交影响力分析
Python极客之家7 小时前
基于数据挖掘的中风智能预测系统
人工智能·python·数据挖掘·毕业设计·课程设计