【机器学习之---数学】拉格朗日乘子法

every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog

0. 前言

优化之

拉格朗日乘子法

1. 概念

拉格朗日乘子法是一种将约束优化问题转化为无约束优化问题的方法,如下面的优化问题:

m i n f ( x ) s . t . g ( x ) = 0 minf(\pmb{x}) \quad s.t. g(\pmb{x}) = 0 minf(x)s.t.g(x)=0

s.t. 是subject to 的缩写,意思是,受限于,即,约束条件

因为有约束存在,无法方便求解,但是如果通过引入拉格朗日函数,

L ( x , λ ) = f ( x ) + λ g ( x ) L(\pmb{x},\lambda) = f(\pmb{x}) + \lambda g(\pmb{x}) L(x,λ)=f(x)+λg(x)

这样函数L就没有约束了,其中, λ \lambda λ称为拉格朗日乘子。原问题可以转化为无约束优化问题:

{ ∇ x L ( x , λ ) = 0 g ( x ) = 0 \left\{ \begin{matrix} \nabla_xL(\pmb{x},\lambda) = 0 \\ g(\pmb{x}) = 0 \end{matrix} \right. {∇xL(x,λ)=0g(x)=0

第一行是 ∇ x L \nabla_xL ∇xL 即L对 x \pmb{x} x的各个分量偏导都等于0,

第二行是 L L L对 λ \lambda λ的偏导等于0,这样我们就将原问题转化为无约束优化问题。

但注意此方程组只是必要条件,即这个方程组求出来的解不一定都是最优解(例如存在鞍点),但是最优解一定在里面。在一些特殊情况下,如f是凸函数,这个方程组的解就才一定是最优解。

2. 理解

为什么最优解在 ∇ x L ( x , λ ) = 0 , g ( x ) = 0 \nabla_xL(\pmb{x},\lambda) = 0 ,\quad g(\pmb{x}) = 0 ∇xL(x,λ)=0,g(x)=0解集中呢?,不妨考虑如下问题:

m i n f ( x 1 , x 2 ) s . t . g ( x 1 , x 2 ) = 0 minf(x_1,x_2) \quad s.t. g(x_1,x_2)=0 minf(x1,x2)s.t.g(x1,x2)=0

目标函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) 是曲面,在xy中用等高线表示,g(x_1,x_2)是曲线,在xy中用黄线表示,

仔细想想可以发现:我们所求的在黄线约束 g ( x 1 , x 2 ) = 0 g(x_1,x_2) = 0 g(x1,x2)=0

下的最优点P一定是约束曲线g=0与目标函数f的某一条等值线的切点,也就是最优点P处约束曲线的法向量 ∇ g \nabla g ∇g

一定与该处的目标函数的梯度

共线(同向或反向,因为

的方向可正可负)。如下图所示:

如果不共线?

如下图所示,假设最优点P处,目标函数梯度 ∇ f \nabla f ∇f

与约束的法向量 ∇ g \nabla g ∇g 不共线,因此负梯度 − ∇ f -\nabla f −∇f

(表示f下降最快的方向)与 ∇ g \nabla g ∇g也不会共线,这样一来负梯度 − ∇ f -\nabla f −∇f 在约束曲线g 上的切向上就存在 紫色的分量

,这就表明黄线上的P点沿此方向再挪一点,目标函数值还能进一步下降,所以当前的P点并不是最优点,与假设矛盾。

故,可用如下数学表达式:

∃ λ ∈ R , 使得, ∇ f + λ ∇ g = 0 \exists \lambda \in R,使得,\nabla f+ \lambda \nabla g = 0 ∃λ∈R,使得,∇f+λ∇g=0

所以拉格朗日乘子 λ \lambda λ就是待求的一个伸缩系数,令 L ( x , λ ) = f ( x ) + λ g ( x ) L(x,\lambda) = f(x) +\lambda g(x) L(x,λ)=f(x)+λg(x)后,
∇ x L ( x , λ ) = ∇ x f ( x ) + λ ∇ x g ( x ) = 0 \nabla_xL(x,\lambda) = \nabla_xf(x) + \lambda \nabla_xg(x) = 0 ∇xL(x,λ)=∇xf(x)+λ∇xg(x)=0

同时, g ( x ) = 0 g(x)=0 g(x)=0

参考

  1. https://zhuanlan.zhihu.com/p/440297403
  2. https://zhuanlan.zhihu.com/p/154517678
相关推荐
后端小肥肠3 小时前
10W+育儿漫画是怎么做的?我用n8n搭建了自动化工作流,3分钟生成到本地磁盘
人工智能·aigc·agent
钛投标免费AI标书工具4 小时前
【官方认证】2025年AI标书工具:免费、零废标、安全
大数据·人工智能·安全
盼小辉丶4 小时前
视觉Transformer实战——Vision Transformer(ViT)详解与实现
人工智能·深度学习·transformer
爱思德学术4 小时前
第二届中欧科学家论坛暨第七届人工智能与先进制造国际会议(AIAM 2025)在德国海德堡成功举办
人工智能·算法·机器学习·语言模型
bug菌4 小时前
边缘新生:openEuler 轻量化基座与云边协同全景实践!
人工智能
oil欧哟4 小时前
Agent 设计与上下文工程- 02 Workflow 设计模式(上)
前端·网络·人工智能
司马阅-SmartRead4 小时前
司马阅与铨亿科技达成生态战略合作,AI赋能工业领域智能化转型
人工智能·aigc
Arenaschi5 小时前
AI对未来游戏模式与游戏开发的助力
网络·人工智能·游戏·ai
RFID舜识物联网5 小时前
NFC与RFID防伪标签:构筑产品信任的科技防线
大数据·人工智能·科技·嵌入式硬件·物联网·安全
IT_陈寒6 小时前
Redis 7个性能优化技巧,让我们的QPS从5k提升到20k+
前端·人工智能·后端