【机器学习之---数学】拉格朗日乘子法

every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog

0. 前言

优化之

拉格朗日乘子法

1. 概念

拉格朗日乘子法是一种将约束优化问题转化为无约束优化问题的方法,如下面的优化问题:

m i n f ( x ) s . t . g ( x ) = 0 minf(\pmb{x}) \quad s.t. g(\pmb{x}) = 0 minf(x)s.t.g(x)=0

s.t. 是subject to 的缩写,意思是,受限于,即,约束条件

因为有约束存在,无法方便求解,但是如果通过引入拉格朗日函数,

L ( x , λ ) = f ( x ) + λ g ( x ) L(\pmb{x},\lambda) = f(\pmb{x}) + \lambda g(\pmb{x}) L(x,λ)=f(x)+λg(x)

这样函数L就没有约束了,其中, λ \lambda λ称为拉格朗日乘子。原问题可以转化为无约束优化问题:

{ ∇ x L ( x , λ ) = 0 g ( x ) = 0 \left\{ \begin{matrix} \nabla_xL(\pmb{x},\lambda) = 0 \\ g(\pmb{x}) = 0 \end{matrix} \right. {∇xL(x,λ)=0g(x)=0

第一行是 ∇ x L \nabla_xL ∇xL 即L对 x \pmb{x} x的各个分量偏导都等于0,

第二行是 L L L对 λ \lambda λ的偏导等于0,这样我们就将原问题转化为无约束优化问题。

但注意此方程组只是必要条件,即这个方程组求出来的解不一定都是最优解(例如存在鞍点),但是最优解一定在里面。在一些特殊情况下,如f是凸函数,这个方程组的解就才一定是最优解。

2. 理解

为什么最优解在 ∇ x L ( x , λ ) = 0 , g ( x ) = 0 \nabla_xL(\pmb{x},\lambda) = 0 ,\quad g(\pmb{x}) = 0 ∇xL(x,λ)=0,g(x)=0解集中呢?,不妨考虑如下问题:

m i n f ( x 1 , x 2 ) s . t . g ( x 1 , x 2 ) = 0 minf(x_1,x_2) \quad s.t. g(x_1,x_2)=0 minf(x1,x2)s.t.g(x1,x2)=0

目标函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) 是曲面,在xy中用等高线表示,g(x_1,x_2)是曲线,在xy中用黄线表示,

仔细想想可以发现:我们所求的在黄线约束 g ( x 1 , x 2 ) = 0 g(x_1,x_2) = 0 g(x1,x2)=0

下的最优点P一定是约束曲线g=0与目标函数f的某一条等值线的切点,也就是最优点P处约束曲线的法向量 ∇ g \nabla g ∇g

一定与该处的目标函数的梯度

共线(同向或反向,因为

的方向可正可负)。如下图所示:

如果不共线?

如下图所示,假设最优点P处,目标函数梯度 ∇ f \nabla f ∇f

与约束的法向量 ∇ g \nabla g ∇g 不共线,因此负梯度 − ∇ f -\nabla f −∇f

(表示f下降最快的方向)与 ∇ g \nabla g ∇g也不会共线,这样一来负梯度 − ∇ f -\nabla f −∇f 在约束曲线g 上的切向上就存在 紫色的分量

,这就表明黄线上的P点沿此方向再挪一点,目标函数值还能进一步下降,所以当前的P点并不是最优点,与假设矛盾。

故,可用如下数学表达式:

∃ λ ∈ R , 使得, ∇ f + λ ∇ g = 0 \exists \lambda \in R,使得,\nabla f+ \lambda \nabla g = 0 ∃λ∈R,使得,∇f+λ∇g=0

所以拉格朗日乘子 λ \lambda λ就是待求的一个伸缩系数,令 L ( x , λ ) = f ( x ) + λ g ( x ) L(x,\lambda) = f(x) +\lambda g(x) L(x,λ)=f(x)+λg(x)后,
∇ x L ( x , λ ) = ∇ x f ( x ) + λ ∇ x g ( x ) = 0 \nabla_xL(x,\lambda) = \nabla_xf(x) + \lambda \nabla_xg(x) = 0 ∇xL(x,λ)=∇xf(x)+λ∇xg(x)=0

同时, g ( x ) = 0 g(x)=0 g(x)=0

参考

  1. https://zhuanlan.zhihu.com/p/440297403
  2. https://zhuanlan.zhihu.com/p/154517678
相关推荐
腾讯云开发者几秒前
AI 时代,职场不慌!前快狗打车CTO沈剑来支招
人工智能
合方圆~小文5 分钟前
球型摄像机作为现代监控系统的核心设备
java·数据库·c++·人工智能
AI_567817 分钟前
AI无人机如何让安全隐患无处遁形
人工智能·无人机
机器之心24 分钟前
DeepSeek强势回归,开源IMO金牌级数学模型
人工智能·openai
机器之心24 分钟前
华为放出「准万亿级MoE推理」大招,两大杀手级优化技术直接开源
人工智能·openai
大力财经26 分钟前
零跑Lafa5正式上市 以“五大硬核实力”开启品牌个性化新篇章
人工智能
ECT-OS-JiuHuaShan30 分钟前
否定之否定的辩证法,谁会不承认?但又有多少人说的透?
开发语言·人工智能·数学建模·生活·学习方法·量子计算·拓扑学
软件开发技术深度爱好者38 分钟前
基于多个大模型自己建造一个AI智能助手(增强版)
人工智能
骥龙1 小时前
4.12、隐私保护机器学习:联邦学习在安全数据协作中的应用
人工智能·安全·网络安全
天硕国产存储技术站1 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘