简单随机抽样之区间估计

中心极限定理

中心极限定理(CLT):求独立随机变量的近似的和的分布,它近似服从正态分布

例如:当n趋于无穷时,可以用正态分布去近似二项分布
设 Φ ( x ) 为 N ( 0 , 1 ) 的分布函数,对一切的 − ∞ < x < + ∞ , 有 P { S n − n p n p q ≤ x } = Φ ( x ) 设\Phi(x)为N(0,1)的分布函数,对一切的-\infty<x<+\infty,有\\ P\{\frac{S_n-np}{\sqrt{npq}} \leq x\}=\Phi(x) 设Φ(x)为N(0,1)的分布函数,对一切的−∞<x<+∞,有P{npq Sn−np≤x}=Φ(x)

林德伯格-列维中心极限定理:

设 { X n } 时独立同分布随机变量序列,均值为 σ 2 , 且 0 < σ 2 < ∞ 。则: Y n = Σ i = 1 n X i − n μ n μ 的分布函数,当 n 趋于无穷时,收敛于标准正态分布函数 Φ ( x ) 设\{X_n\}时独立同分布随机变量序列,均值为\sigma^2,且0<\sigma^2<\infty。则:\\ Y_n=\frac{\Sigma{^{n}_{i=1}}X_i-n\mu}{\sqrt{n\mu}}\\ 的分布函数,当n趋于无穷时,收敛于标准正态分布函数\Phi(x) 设{Xn}时独立同分布随机变量序列,均值为σ2,且0<σ2<∞。则:Yn=nμ Σi=1nXi−nμ的分布函数,当n趋于无穷时,收敛于标准正态分布函数Φ(x)

区间估计

区间估计与点估计的概念

区间估计:

**在考虑抽样误差条件下,根据实际抽样所得到的样本统计量去推断总体参数的可能范围的抽样推断方法即为区间估计。 点估计: 不考虑抽样误差,直接用样本统计量代替总体参数。即 **
X ˉ = x ˉ ; P = p \bar X=\bar x;\\ P = p Xˉ=xˉ;P=p

两种估计的区别:

**点估计不能说明误差大小,意义不大;而采用区间估计,可以将误差控制在一定的范围内(即说明总体参数在某一范围内的可能性大小) **


解: 已知: N = 30587 , 抽样方法:随机无放回 ; n = 2000 ; 烟民: 785 置信水平: 90 % 1. 点估计: P ^ = p = y ˉ = 785 2000 ≈ 0.3925 2. 点估计的方差 : v ( p ) = 1 − f n − 1 p q = 1 − 2000 30587 2000 − 1 ∗ 0.3925 ∗ 0.6075 = 0.0001 3. 置信区间: ( p ± u α / 2 v ( p ) ) = ( 0.3952 ± 0.01 ∗ 1.645 ) = ( 37.61 % , 40.90 % ) 解:\\ 已知:N=30587,抽样方法:随机无放回;n = 2000;烟民:785\\ 置信水平:90\%\\ 1.点估计: \hat P = p = \bar y = \frac{785}{2000} \approx0.3925\\ 2.点估计的方差:v(p)=\frac{1-f}{n-1}pq=\frac{1-\frac{2000}{30587}}{2000-1}*0.3925*0.6075=0.0001\\ 3.置信区间:\\ (p\pm u_{\alpha/2}\sqrt {v(p)})= (0.3952\pm0.01*1.645)=(37.61\%,40.90\%) 解:已知:N=30587,抽样方法:随机无放回;n=2000;烟民:785置信水平:90%1.点估计:P^=p=yˉ=2000785≈0.39252.点估计的方差:v(p)=n−11−fpq=2000−11−305872000∗0.3925∗0.6075=0.00013.置信区间:(p±uα/2v(p) )=(0.3952±0.01∗1.645)=(37.61%,40.90%)

确定样本容量



相关推荐
软件开发技术深度爱好者1 小时前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角
碎叶城李白1 小时前
若依学习笔记1-validated
java·笔记·学习·validated
im_AMBER2 小时前
学习日志05 python
python·学习
真的想上岸啊3 小时前
学习C++、QT---18(C++ 记事本项目的stylesheet)
开发语言·c++·学习
HuashuiMu花水木3 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
rui锐rui4 小时前
大数据学习2:HIve
大数据·hive·学习
凛铄linshuo4 小时前
爬虫简单实操2——以贴吧为例爬取“某吧”前10页的网页代码
爬虫·python·学习
大春儿的试验田5 小时前
高并发收藏功能设计:Redis异步同步与定时补偿机制详解
java·数据库·redis·学习·缓存
笑衬人心。6 小时前
Ubuntu 22.04 修改默认 Python 版本为 Python3 笔记
笔记·python·ubuntu
金色光环6 小时前
【Modbus学习笔记】stm32实现Modbus
笔记·stm32·学习