【学习心得】神经网络知识中的符号解释

这里我对我学到的神经网络知识中,常见的符号做一下记录和总结,方便自己在后面学习中复习。下图二分类识别图像识别猫为例。为了保存一张图片,需要三个矩阵,它们分别对应图片中的红、绿、蓝三种颜色通道,如果图片大小为64x64像素,那么就有三个规模为64x64的矩阵,分别对应图片中红、绿、蓝三种像素的强度值。

为了把这些像素值放到一个特征向量中,我们需要把这些像素值提取出来,然后放入一个特征向量。我们用,来表示输入特征向量的维度。有时候为了简洁,我会直接用小写的来表示输入特征向量的维度。所以在二分类问题中,我们的目标就是习得一个分类器,它以图片的特征向量作为输入,然后预测输出结果为1还是0,预测图片中是否有猫。

|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 符号 | 解释 |
| | 表示样本数目 |
| | 特征的维度 |
| | 特征向量,一个维特征向量,他是神经网络的输入数据, |
| | 实际值,真实图片中到底是不是猫,取值为 |
| | 预测值,表示神经网络的输出结果,二分类任务中取值为 |
| | 表示第组数据,可能是训练数据,也可能是测试数据,此处默认为训练数据 |
| | 表示所有的训练数据集的输入值,放在一个的矩阵中 |
| | 表示所有训练数据集的输出值,放在一个的矩阵中 |
| | 测试集的样本数 |
| | 训练集的样本数 |

相关推荐
萧鼎14 分钟前
RAGFlow:构建高效检索增强生成流程的技术解析
人工智能·python
爱的叹息18 分钟前
主流开源 LLM 应用开发平台详解
人工智能·开源
赋范大模型技术社区20 分钟前
从0手撕代码搭建MCP Client与Server!详解DeepSeek、ollama、vLLM接入MCP实战!
人工智能·mcp
Baihai_IDP30 分钟前
面对开源大模型浪潮,基础模型公司如何持续盈利?
人工智能·openai·deepseek
陈明勇31 分钟前
MCP 实战:用 Go 语言开发一个查询 IP 信息的 MCP 服务器
人工智能·后端·mcp
浏览器爱好者37 分钟前
如何下载适用于语音识别功能增强的Google Chrome浏览器
人工智能·chrome·语音识别
孔令飞1 小时前
彻底学会 gRPC:用 Go 实现一个迷你考试服务
人工智能·云原生·go
梓羽玩Python1 小时前
告别OCR!这个AI文档神器直接"看懂"PDF,支持文档归类及多模态问答!
人工智能·github
weixin_457885821 小时前
Discuz!+DeepSeek:传统论坛的智能化蜕变之路
人工智能·学习·discuz·deepseek
檀越剑指大厂2 小时前
Browser-Use WebUI:让AI自动使用浏览器帮你查询信息执行任务
人工智能