【学习心得】神经网络知识中的符号解释

这里我对我学到的神经网络知识中,常见的符号做一下记录和总结,方便自己在后面学习中复习。下图二分类识别图像识别猫为例。为了保存一张图片,需要三个矩阵,它们分别对应图片中的红、绿、蓝三种颜色通道,如果图片大小为64x64像素,那么就有三个规模为64x64的矩阵,分别对应图片中红、绿、蓝三种像素的强度值。

为了把这些像素值放到一个特征向量中,我们需要把这些像素值提取出来,然后放入一个特征向量。我们用,来表示输入特征向量的维度。有时候为了简洁,我会直接用小写的来表示输入特征向量的维度。所以在二分类问题中,我们的目标就是习得一个分类器,它以图片的特征向量作为输入,然后预测输出结果为1还是0,预测图片中是否有猫。

|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 符号 | 解释 |
| | 表示样本数目 |
| | 特征的维度 |
| | 特征向量,一个维特征向量,他是神经网络的输入数据, |
| | 实际值,真实图片中到底是不是猫,取值为 |
| | 预测值,表示神经网络的输出结果,二分类任务中取值为 |
| | 表示第组数据,可能是训练数据,也可能是测试数据,此处默认为训练数据 |
| | 表示所有的训练数据集的输入值,放在一个的矩阵中 |
| | 表示所有训练数据集的输出值,放在一个的矩阵中 |
| | 测试集的样本数 |
| | 训练集的样本数 |

相关推荐
mzlogin1 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮1 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻2 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑2 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互
love530love2 小时前
【笔记】在 MSYS2(MINGW64)中正确安装 Rust
运维·开发语言·人工智能·windows·笔记·python·rust
狂小虎2 小时前
02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
深度学习·神经网络·逻辑回归
A林玖2 小时前
【机器学习】主成分分析 (PCA)
人工智能·机器学习
Jamence2 小时前
多模态大语言模型arxiv论文略读(108)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
tongxianchao2 小时前
双空间知识蒸馏用于大语言模型
人工智能·语言模型·自然语言处理
苗老大2 小时前
MMRL: Multi-Modal Representation Learning for Vision-Language Models(多模态表示学习)
人工智能·学习·语言模型