文章目录
回溯理论基础
概念
回溯是递归的副产品,本质上是一种穷举
回溯解决的问题可以抽象为一种树形结构
类型
回溯主要用来解决以下问题
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
回溯模板
java
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
77. 组合
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
- 输入:n = 4, k = 2
- 输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:
- 输入:n = 1, k = 1
- 输出:[[1]]
提示:
1 <= n <= 20
1 <= k <= n
解题思路
用回溯法,递归解决嵌套层数的问题来暴力搜索。
递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了。
由于取过的数不再重复取,所以要动态收缩范围
源码
java
class Solution {
List<List<Integer>> result= new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
backtracking(n,k,1);
return result;
}
public void backtracking(int n,int k,int startIndex){
if (path.size() == k){
result.add(new ArrayList<>(path));
return;
}
for (int i =startIndex;i<=n;i++){
path.add(i);
backtracking(n,k,i+1);
path.removeLast();
}
}
}