comfyui 代码结构分析

comfyui的服务器端是用aiohtttp写的,webui是fastapi直接构建的,但是其实comfyui的这种设计思路是很好的,也许我们不需要在后端起一个复杂的前台,但是可以借助json结构化pipeline,然后利用node节点流把整个流程重新映射出来。有些串联的pipeline是比较复杂的,但是串联起来可以实现一些比较好的功能,而这些功能其实可以被放在一个框架中训练,这是很值得思考和算法化的地方。

1.启动

python 复制代码
pip install -r requirements.txt

2.代码分析

python 复制代码
main.py->
comfy->cli_args.py:

server = server.PromptServer(loop)->
    - 
q = execution.PromptQueue(server)->

init_custom_nodes()->nodes.py->load_custom_node()->load_custom_nodes()

threading.Thread(target=prompt_worker,daemon=True,args=(q,server,)).start()
    - prompt_worker()->
    - queue_item = q.get() -> self.queue
    - item,item_id = queue_item   prompt_id = item[1]
    - e.execute(item[2],prompt_id,item[3],item[4]) ->
    -- with torch.inference_mode() ->
    -- for x in prompt: recursive_output_delete_if_changed(prompt,self.old_prompt,self.outputs,x)->
    --- inputs = prompt[unique_id]['inputs'] class_type = prompt[unique_id]['class_type'] class_def = nodes.NODE_CLASS_MAPPINGS[class_type] ->
    --- input_data_all = get_input_data(inputs,class_def,unique_id,outputs) ->
    --- is_changed = map_node_over_list(class_def,input_data_all,"IS_CHANGED") ->
    --- results.append(getattr(obj,func)(**slice_dict(input_data_all,i)))

loop.run_until_complete(run(server,address,port,...))

comfyui中主要实现node节点的就是getattr(obj,func)方法,实现之后再存入节点中,下次取。

nodes.py 中存了大量的节点,是提前定义的,comfy_extras中也存了很多后来加入的节点,都放在NODE_CLASS_MAPPINGS中。

comfy中实现了具体的方法,当安装外部插件时,新增的后端代码放在custom_nodes中,前端代码放在web中,comfyui中的前端代码都在web/extension/core中,还算是一个前后分开的项目。

具体的节点调用方法,我这里有个简单的工作流,尝试着走完全流程来看下结果:

python 复制代码
{
  "last_node_id": 9,
  "last_link_id": 9,
  "nodes": [
    {
      "id": 7,
      "type": "CLIPTextEncode",
      "pos": [
        413,
        389
      ],
      "size": {
        "0": 425.27801513671875,
        "1": 180.6060791015625
      },
      "flags": {},
      "order": 3,
      "mode": 0,
      "inputs": [
        {
          "name": "clip",
          "type": "CLIP",
          "link": 5
        }
      ],
      "outputs": [
        {
          "name": "CONDITIONING",
          "type": "CONDITIONING",
          "links": [
            6
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "CLIPTextEncode"
      },
      "widgets_values": [
        "text, watermark"
      ]
    },
    {
      "id": 5,
      "type": "EmptyLatentImage",
      "pos": [
        473,
        609
      ],
      "size": {
        "0": 315,
        "1": 106
      },
      "flags": {},
      "order": 0,
      "mode": 0,
      "outputs": [
        {
          "name": "LATENT",
          "type": "LATENT",
          "links": [
            2
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "EmptyLatentImage"
      },
      "widgets_values": [
        512,
        512,
        2
      ]
    },
    {
      "id": 8,
      "type": "VAEDecode",
      "pos": [
        1209,
        188
      ],
      "size": {
        "0": 210,
        "1": 46
      },
      "flags": {},
      "order": 5,
      "mode": 0,
      "inputs": [
        {
          "name": "samples",
          "type": "LATENT",
          "link": 7
        },
        {
          "name": "vae",
          "type": "VAE",
          "link": 8
        }
      ],
      "outputs": [
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            9
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "VAEDecode"
      }
    },
    {
      "id": 3,
      "type": "KSampler",
      "pos": [
        863,
        186
      ],
      "size": {
        "0": 315,
        "1": 262
      },
      "flags": {},
      "order": 4,
      "mode": 0,
      "inputs": [
        {
          "name": "model",
          "type": "MODEL",
          "link": 1
        },
        {
          "name": "positive",
          "type": "CONDITIONING",
          "link": 4
        },
        {
          "name": "negative",
          "type": "CONDITIONING",
          "link": 6
        },
        {
          "name": "latent_image",
          "type": "LATENT",
          "link": 2
        }
      ],
      "outputs": [
        {
          "name": "LATENT",
          "type": "LATENT",
          "links": [
            7
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "KSampler"
      },
      "widgets_values": [
        710912628627374,
        "randomize",
        20,
        8,
        "dpmpp_3m_sde_gpu",
        "normal",
        1
      ]
    },
    {
      "id": 6,
      "type": "CLIPTextEncode",
      "pos": [
        415,
        186
      ],
      "size": {
        "0": 422.84503173828125,
        "1": 164.31304931640625
      },
      "flags": {},
      "order": 2,
      "mode": 0,
      "inputs": [
        {
          "name": "clip",
          "type": "CLIP",
          "link": 3
        }
      ],
      "outputs": [
        {
          "name": "CONDITIONING",
          "type": "CONDITIONING",
          "links": [
            4
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "CLIPTextEncode"
      },
      "widgets_values": [
        "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,"
      ]
    },
    {
      "id": 9,
      "type": "SaveImage",
      "pos": [
        1451,
        189
      ],
      "size": [
        210,
        270
      ],
      "flags": {},
      "order": 6,
      "mode": 0,
      "inputs": [
        {
          "name": "images",
          "type": "IMAGE",
          "link": 9
        }
      ],
      "properties": {},
      "widgets_values": [
        "ComfyUI"
      ]
    },
    {
      "id": 4,
      "type": "CheckpointLoaderSimple",
      "pos": [
        26,
        474
      ],
      "size": {
        "0": 315,
        "1": 98
      },
      "flags": {},
      "order": 1,
      "mode": 0,
      "outputs": [
        {
          "name": "MODEL",
          "type": "MODEL",
          "links": [
            1
          ],
          "slot_index": 0
        },
        {
          "name": "CLIP",
          "type": "CLIP",
          "links": [
            3,
            5
          ],
          "slot_index": 1
        },
        {
          "name": "VAE",
          "type": "VAE",
          "links": [
            8
          ],
          "slot_index": 2
        }
      ],
      "properties": {
        "Node name for S&R": "CheckpointLoaderSimple"
      },
      "widgets_values": [
        "revAnimated_v122.safetensors"
      ]
    }
  ],
  "links": [
    [
      1,
      4,
      0,
      3,
      0,
      "MODEL"
    ],
    [
      2,
      5,
      0,
      3,
      3,
      "LATENT"
    ],
    [
      3,
      4,
      1,
      6,
      0,
      "CLIP"
    ],
    [
      4,
      6,
      0,
      3,
      1,
      "CONDITIONING"
    ],
    [
      5,
      4,
      1,
      7,
      0,
      "CLIP"
    ],
    [
      6,
      7,
      0,
      3,
      2,
      "CONDITIONING"
    ],
    [
      7,
      3,
      0,
      8,
      0,
      "LATENT"
    ],
    [
      8,
      4,
      2,
      8,
      1,
      "VAE"
    ],
    [
      9,
      8,
      0,
      9,
      0,
      "IMAGE"
    ]
  ],
  "groups": [],
  "config": {},
  "extra": {},
  "version": 0.4
}
python 复制代码
Load Checkpoint->CheckpointLoaderSimple
input_data_all:{'ckpt_name': ['revAnimated_v122.safetensors']}
obj:<nodes.CheckpointLoaderSimple object at 0x7f3f9b3af640>
func:load_checkpoint
nodes.py->CheckpointLoaderSimple.load_checkpoint()
- RETURN_TYPES=("MODEL","CLIP","VAE")=右边的节点;FUNCTION="load_checkpoint"节点中的方法
- INPUT_TYPES=要输入的节点
- out = comfy.sd.load_checkpoint_guess_config(ckpt_path,...)->
-- sd = comfy.utils.load_torch_file(ckpt_path)
-- model = model_config.get_model(sd,"model.diffusion_model.")
-- model.load_model_weights()
-- vae = VAE(sd=vae_sd)
-- clip = CLIP(clip_target, embedding_directory=embedding_directory)
-- m, u = clip.load_sd(clip_sd, full_model=True)
-- model_patcher = comfy.model_patcher.ModelPatcher()
[(<comfy.model_patcher.ModelPatcher object at 0x7f35fc07dab0>, <comfy.sd.CLIP object at 0x7f35fc1937f0>, <comfy.sd.VAE object at 0x7f35ffd36320>)]


CLIP Text Encode(Prompt)->CLIPTextEncode
input_data_all:{'text': ['beautiful scenery nature glass bottle landscape, , purple galaxy bottle,'], 'clip': [<comfy.sd.CLIP object at 0x7f35fc1937f0>]}
obj:<nodes.CLIPTextEncode object at 0x7f35fc193760>
func:"encode"
nodes.py->CLIPTextEncode.encode()
- RETURN_TYPES=("CONDITIONING") FUNCTION="encode"  INPUT_TYPES {"required":{"text":("STRING",{"multiline":True}),"clip":("CLIP",)}}
- tokens = clip.tokenize(text)
-- comfyui.comfy.sd.CLIP.tokenize->
-- self.tokenizer.tokenize_with_weights(text,return_word_ids)
--- comfyui.comfy.sd1_clip.SD1Tokenizer.tokenize_with_weights(text,..)
- cond,pooled = clip.encode_from_tokens(tokens,return_pooled=True)
cond:1x77x768 pooled:1x768


Empty Latent Image->EmptyLatentImage
input_data_all:{'width': [512], 'height': [512], 'batch_size': [2]}
obj:<nodes.EmptyLatentImage object at 0x7f36006d7640>
func:"generat"
nodes.py->EmptyLatentImage.generate
- latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
({"samples":latent})


KSampler->Ksampler
input_data_all:'seed': [50385774161222], 'steps': [20], 'cfg': [8.0], 'sampler_name': ['dpmpp_3m_sde_gpu'], 'scheduler': ['normal'], 'denoise': [1.0], 'model': [<comfy.model_patcher.ModelPatcher object at 0x7f35fc07dab0>], 'positive':....
obj:<nodes.KSampler object at 0x7f35fc193b20>
func:sample
nodes.py->Ksampler.sample
- common_ksampler(...)->
-- latent_image = latent['sample']
-- noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
-- samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, ....)
--- real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
--- sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
--- samples = sampler.sample(noise, ....)


....
相关推荐
懵懵爸爸7 小时前
comfyui 安装sageattention 编译失败报错 code 1120 PyInit__qattn_sm80
comfyui·sageattention
Mr数据杨13 小时前
【ComfyUI】Qwen Edit 写真常用8镜头角度图像一致性生成
comfyui
Mr数据杨16 小时前
【ComfyUI】Qwen Edit 文字描述多图合成
comfyui
人工智能AI技术17 小时前
【SD教程】提示词
人工智能·stable diffusion·aigc·ai绘画
一点晖光1 天前
stable diffusion搭建指南
stable diffusion
Mr数据杨2 天前
【ComfyUI】Wan2.2 SmoothMix 文生视频自动扩写
comfyui
Mr数据杨2 天前
【ComfyUI】Qwen Wan2.2 写真4角度运镜视频生成
comfyui
吐个泡泡v3 天前
扩散模型详解:从DDPM到Stable Diffusion再到DiT的技术演进
stable diffusion·transformer·扩散模型·ddpm·dit
Blossom.1183 天前
基于MLOps+LLM的模型全生命周期自动化治理系统:从数据漂移到智能回滚的落地实践
运维·人工智能·学习·决策树·stable diffusion·自动化·音视频
Mr数据杨4 天前
【ComfyUI】Qwen 固定人物IP多场景生成写真生成
comfyui