comfyui 代码结构分析

comfyui的服务器端是用aiohtttp写的,webui是fastapi直接构建的,但是其实comfyui的这种设计思路是很好的,也许我们不需要在后端起一个复杂的前台,但是可以借助json结构化pipeline,然后利用node节点流把整个流程重新映射出来。有些串联的pipeline是比较复杂的,但是串联起来可以实现一些比较好的功能,而这些功能其实可以被放在一个框架中训练,这是很值得思考和算法化的地方。

1.启动

python 复制代码
pip install -r requirements.txt

2.代码分析

python 复制代码
main.py->
comfy->cli_args.py:

server = server.PromptServer(loop)->
    - 
q = execution.PromptQueue(server)->

init_custom_nodes()->nodes.py->load_custom_node()->load_custom_nodes()

threading.Thread(target=prompt_worker,daemon=True,args=(q,server,)).start()
    - prompt_worker()->
    - queue_item = q.get() -> self.queue
    - item,item_id = queue_item   prompt_id = item[1]
    - e.execute(item[2],prompt_id,item[3],item[4]) ->
    -- with torch.inference_mode() ->
    -- for x in prompt: recursive_output_delete_if_changed(prompt,self.old_prompt,self.outputs,x)->
    --- inputs = prompt[unique_id]['inputs'] class_type = prompt[unique_id]['class_type'] class_def = nodes.NODE_CLASS_MAPPINGS[class_type] ->
    --- input_data_all = get_input_data(inputs,class_def,unique_id,outputs) ->
    --- is_changed = map_node_over_list(class_def,input_data_all,"IS_CHANGED") ->
    --- results.append(getattr(obj,func)(**slice_dict(input_data_all,i)))

loop.run_until_complete(run(server,address,port,...))

comfyui中主要实现node节点的就是getattr(obj,func)方法,实现之后再存入节点中,下次取。

nodes.py 中存了大量的节点,是提前定义的,comfy_extras中也存了很多后来加入的节点,都放在NODE_CLASS_MAPPINGS中。

comfy中实现了具体的方法,当安装外部插件时,新增的后端代码放在custom_nodes中,前端代码放在web中,comfyui中的前端代码都在web/extension/core中,还算是一个前后分开的项目。

具体的节点调用方法,我这里有个简单的工作流,尝试着走完全流程来看下结果:

python 复制代码
{
  "last_node_id": 9,
  "last_link_id": 9,
  "nodes": [
    {
      "id": 7,
      "type": "CLIPTextEncode",
      "pos": [
        413,
        389
      ],
      "size": {
        "0": 425.27801513671875,
        "1": 180.6060791015625
      },
      "flags": {},
      "order": 3,
      "mode": 0,
      "inputs": [
        {
          "name": "clip",
          "type": "CLIP",
          "link": 5
        }
      ],
      "outputs": [
        {
          "name": "CONDITIONING",
          "type": "CONDITIONING",
          "links": [
            6
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "CLIPTextEncode"
      },
      "widgets_values": [
        "text, watermark"
      ]
    },
    {
      "id": 5,
      "type": "EmptyLatentImage",
      "pos": [
        473,
        609
      ],
      "size": {
        "0": 315,
        "1": 106
      },
      "flags": {},
      "order": 0,
      "mode": 0,
      "outputs": [
        {
          "name": "LATENT",
          "type": "LATENT",
          "links": [
            2
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "EmptyLatentImage"
      },
      "widgets_values": [
        512,
        512,
        2
      ]
    },
    {
      "id": 8,
      "type": "VAEDecode",
      "pos": [
        1209,
        188
      ],
      "size": {
        "0": 210,
        "1": 46
      },
      "flags": {},
      "order": 5,
      "mode": 0,
      "inputs": [
        {
          "name": "samples",
          "type": "LATENT",
          "link": 7
        },
        {
          "name": "vae",
          "type": "VAE",
          "link": 8
        }
      ],
      "outputs": [
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            9
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "VAEDecode"
      }
    },
    {
      "id": 3,
      "type": "KSampler",
      "pos": [
        863,
        186
      ],
      "size": {
        "0": 315,
        "1": 262
      },
      "flags": {},
      "order": 4,
      "mode": 0,
      "inputs": [
        {
          "name": "model",
          "type": "MODEL",
          "link": 1
        },
        {
          "name": "positive",
          "type": "CONDITIONING",
          "link": 4
        },
        {
          "name": "negative",
          "type": "CONDITIONING",
          "link": 6
        },
        {
          "name": "latent_image",
          "type": "LATENT",
          "link": 2
        }
      ],
      "outputs": [
        {
          "name": "LATENT",
          "type": "LATENT",
          "links": [
            7
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "KSampler"
      },
      "widgets_values": [
        710912628627374,
        "randomize",
        20,
        8,
        "dpmpp_3m_sde_gpu",
        "normal",
        1
      ]
    },
    {
      "id": 6,
      "type": "CLIPTextEncode",
      "pos": [
        415,
        186
      ],
      "size": {
        "0": 422.84503173828125,
        "1": 164.31304931640625
      },
      "flags": {},
      "order": 2,
      "mode": 0,
      "inputs": [
        {
          "name": "clip",
          "type": "CLIP",
          "link": 3
        }
      ],
      "outputs": [
        {
          "name": "CONDITIONING",
          "type": "CONDITIONING",
          "links": [
            4
          ],
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "CLIPTextEncode"
      },
      "widgets_values": [
        "beautiful scenery nature glass bottle landscape, , purple galaxy bottle,"
      ]
    },
    {
      "id": 9,
      "type": "SaveImage",
      "pos": [
        1451,
        189
      ],
      "size": [
        210,
        270
      ],
      "flags": {},
      "order": 6,
      "mode": 0,
      "inputs": [
        {
          "name": "images",
          "type": "IMAGE",
          "link": 9
        }
      ],
      "properties": {},
      "widgets_values": [
        "ComfyUI"
      ]
    },
    {
      "id": 4,
      "type": "CheckpointLoaderSimple",
      "pos": [
        26,
        474
      ],
      "size": {
        "0": 315,
        "1": 98
      },
      "flags": {},
      "order": 1,
      "mode": 0,
      "outputs": [
        {
          "name": "MODEL",
          "type": "MODEL",
          "links": [
            1
          ],
          "slot_index": 0
        },
        {
          "name": "CLIP",
          "type": "CLIP",
          "links": [
            3,
            5
          ],
          "slot_index": 1
        },
        {
          "name": "VAE",
          "type": "VAE",
          "links": [
            8
          ],
          "slot_index": 2
        }
      ],
      "properties": {
        "Node name for S&R": "CheckpointLoaderSimple"
      },
      "widgets_values": [
        "revAnimated_v122.safetensors"
      ]
    }
  ],
  "links": [
    [
      1,
      4,
      0,
      3,
      0,
      "MODEL"
    ],
    [
      2,
      5,
      0,
      3,
      3,
      "LATENT"
    ],
    [
      3,
      4,
      1,
      6,
      0,
      "CLIP"
    ],
    [
      4,
      6,
      0,
      3,
      1,
      "CONDITIONING"
    ],
    [
      5,
      4,
      1,
      7,
      0,
      "CLIP"
    ],
    [
      6,
      7,
      0,
      3,
      2,
      "CONDITIONING"
    ],
    [
      7,
      3,
      0,
      8,
      0,
      "LATENT"
    ],
    [
      8,
      4,
      2,
      8,
      1,
      "VAE"
    ],
    [
      9,
      8,
      0,
      9,
      0,
      "IMAGE"
    ]
  ],
  "groups": [],
  "config": {},
  "extra": {},
  "version": 0.4
}
python 复制代码
Load Checkpoint->CheckpointLoaderSimple
input_data_all:{'ckpt_name': ['revAnimated_v122.safetensors']}
obj:<nodes.CheckpointLoaderSimple object at 0x7f3f9b3af640>
func:load_checkpoint
nodes.py->CheckpointLoaderSimple.load_checkpoint()
- RETURN_TYPES=("MODEL","CLIP","VAE")=右边的节点;FUNCTION="load_checkpoint"节点中的方法
- INPUT_TYPES=要输入的节点
- out = comfy.sd.load_checkpoint_guess_config(ckpt_path,...)->
-- sd = comfy.utils.load_torch_file(ckpt_path)
-- model = model_config.get_model(sd,"model.diffusion_model.")
-- model.load_model_weights()
-- vae = VAE(sd=vae_sd)
-- clip = CLIP(clip_target, embedding_directory=embedding_directory)
-- m, u = clip.load_sd(clip_sd, full_model=True)
-- model_patcher = comfy.model_patcher.ModelPatcher()
[(<comfy.model_patcher.ModelPatcher object at 0x7f35fc07dab0>, <comfy.sd.CLIP object at 0x7f35fc1937f0>, <comfy.sd.VAE object at 0x7f35ffd36320>)]


CLIP Text Encode(Prompt)->CLIPTextEncode
input_data_all:{'text': ['beautiful scenery nature glass bottle landscape, , purple galaxy bottle,'], 'clip': [<comfy.sd.CLIP object at 0x7f35fc1937f0>]}
obj:<nodes.CLIPTextEncode object at 0x7f35fc193760>
func:"encode"
nodes.py->CLIPTextEncode.encode()
- RETURN_TYPES=("CONDITIONING") FUNCTION="encode"  INPUT_TYPES {"required":{"text":("STRING",{"multiline":True}),"clip":("CLIP",)}}
- tokens = clip.tokenize(text)
-- comfyui.comfy.sd.CLIP.tokenize->
-- self.tokenizer.tokenize_with_weights(text,return_word_ids)
--- comfyui.comfy.sd1_clip.SD1Tokenizer.tokenize_with_weights(text,..)
- cond,pooled = clip.encode_from_tokens(tokens,return_pooled=True)
cond:1x77x768 pooled:1x768


Empty Latent Image->EmptyLatentImage
input_data_all:{'width': [512], 'height': [512], 'batch_size': [2]}
obj:<nodes.EmptyLatentImage object at 0x7f36006d7640>
func:"generat"
nodes.py->EmptyLatentImage.generate
- latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
({"samples":latent})


KSampler->Ksampler
input_data_all:'seed': [50385774161222], 'steps': [20], 'cfg': [8.0], 'sampler_name': ['dpmpp_3m_sde_gpu'], 'scheduler': ['normal'], 'denoise': [1.0], 'model': [<comfy.model_patcher.ModelPatcher object at 0x7f35fc07dab0>], 'positive':....
obj:<nodes.KSampler object at 0x7f35fc193b20>
func:sample
nodes.py->Ksampler.sample
- common_ksampler(...)->
-- latent_image = latent['sample']
-- noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
-- samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, ....)
--- real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
--- sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
--- samples = sampler.sample(noise, ....)


....
相关推荐
Mr数据杨2 天前
【ComfyUI】Wan2.2 CharacterMotion 单图角色关键词驱动视频生成
comfyui
喆星时瑜4 天前
关于 ComfyUI 的 Windows 本地部署系统环境教程(详细讲解Windows 10/11、NVIDIA GPU、Python、PyTorch环境等)
python·cuda·comfyui
Coovally AI模型快速验证5 天前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
人工智能·深度学习·目标检测·计算机视觉·stable diffusion
Mr数据杨6 天前
【ComfyUI】Stable Zero123 单图生成3D视图
comfyui
Brianna Home7 天前
大模型如何变身金融风控专家
人工智能·深度学习·机器学习·自然语言处理·stable diffusion·1024程序员节
Mr数据杨7 天前
【ComfyUI】通用 文生图转视频
comfyui
Mr数据杨7 天前
【ComfyUI】混元3D 2.0 Turbo 多视图生成模型
comfyui
Mr数据杨7 天前
【ComfyUI】Stable Audio 文本生成音频
comfyui
leafff1237 天前
新手入坑 Stable Diffusion:模型、LoRA、硬件一篇讲透
人工智能·计算机视觉·stable diffusion
喆星时瑜12 天前
ComfyUI本地部署Stable Diffusion:核心组件(Python、PyTorch、CUDA)版本与显卡配置全指南
pytorch·python·stable diffusion