在查看pytorch官方文档的时候,在这里链接中https://pytorch.org/tutorials/beginner/basics/data_tutorial.html的Creating a Custom Dataset for your files章节,有提到要自定义数据集,需要用到实际的图片和标签。
在网上找了半天没找到,写了一个脚本将图片和标签文本下载到本地。
python
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
# 写入到本地
count=0
for index,x in test_data:
print(index.size(),x)
count=count+1
classes = [
"T-shirttop",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankleboot",
]
import torch
from torchvision.utils import save_image
folder_path = './data/imageandlableTest' # 替换为你的文件夹路径
filename = '{}{}.jpg'.format(classes[x],count) # 图片文件名
# 确保文件夹存在
import os
if not os.path.exists(folder_path):
os.makedirs(folder_path)
# 保存图片
save_path = os.path.join(folder_path, filename)
save_image(index, save_path)
with open('./data/imageandlableTest/output.txt', 'a') as f:
f.write("{},{}\n".format(filename,x))
print(count)