深度学习评价指标(1):目标检测的评价指标

1. 简述

在计算机视觉/深度学习领域,每一个方向都有属于自己的评价指标。通常在评估一个模型时,只需要计算出相应的评价指标,便可以评估算法的性能。同时,所谓SOTA,皆是基于某一评价指标进行的评估。

接下来,我们将对目标检测领域的评价指标做一个大体的说明,其中涉及Precision,AP,mAP,Accuracy等指标。

2. IOU

交并比,表示实际识别框与目标标注框的重合程度,如下绿色框为数据标注框,红色为实际识别框(预测框),两者做交集面积与并集面积比,衡量识别性能;

3. Precision(查准率)

针对特定类别α,衡量识别出的目标中,识别正确的数量占比。

假设识别出的类别α有P个目标,其中识别正确的为TP个,错误的为FP个,有关系P = TP+FP,识别精准率Precision计算如下:

更进一步,识别正确的判定可依据IOU为50%,75%或95%来认定,对应的有[email protected][email protected][email protected]

Precision表示所有被检测为正例的情况下,实际为正例的比例。

4. Recall, 召回率(查全率)

假设当前样本中共有M个类别为α的目标,识别出的目标数量为TP个,未被识别的有FN个,及M = TP + FN,则有如下关系:

Recall表示所有应该被检测为正例的情况是,实际被检测为正例的情况。

特别注意:

查准率和查全率往往是一个互相矛盾的优化方向。如果我们想要提高查准率,那么我们可以通过提高阈值,这样可以检测出实际更可靠的正例,提高(TP)的数量,那些被错误检测为正例(TP)的数量相应会减小。这样一来,Precision就会变大。

但是这个时候,一些实际为正例,但没有被检测到的目标(FN)的数量就会增加,这个时候Recall会变小。

5. AP(平均精度)

平均精度是针对单个类来讲的,首先计算单个类的PR曲线,AP则是PR曲线下的面积。

选取IOU取[0.5 : 0.95 : 0.05]([start:stop:step]),测得每一个IOU下的Precision和Recall,计算PR曲线下的面积。

如下图所示,为PR曲线样例,其中横轴一般为Recall,纵轴一般为Precision。

6. mAP,平均精度均值

AP是针对单个类的评价参数,而mAP则是针对多个类的一个综合评价参数。如果有多个类别,我们分别计算每一个类别的AP,然后取平均,得到mAP(mean Average Precision)。

其中,为类别i的平均精度,N为类别数。

6. Accuracy

以上查准率和查全率以及对应的综合评价参数都是针对正例而言的。而准确率则是针对所有的正负例,是一个综合的评价指标。

预测的所有目标中,预测正确的占比。准确率提供了模型对所有类别预测准确性的总体评估,它是一个直观的性能指标,表明模型在所有预测中有多少是正确的。

准确率提供了模型对所有类别预测的整体准确度,但它可能受到类别不平衡的影响。例如,如果负类样本远多于正类样本,那么即使模型只是简单地将所有样本预测为负类,准确率也可能会很高,但这并不意味着模型具有良好的预测性能。

相关推荐
lqjun0827几秒前
Pytorch实现常用代码笔记
人工智能·pytorch·笔记
qyhua1 分钟前
用 PyTorch 从零实现简易GPT(Transformer 模型)
人工智能·pytorch·transformer
白熊18838 分钟前
【计算机视觉】OpenCV项目实战:基于face_recognition库的实时人脸识别系统深度解析
人工智能·opencv·计算机视觉
桃花键神40 分钟前
华为云Flexus+DeepSeek征文|基于Dify平台tiktok音乐领域热门短视频分析Ai agent
人工智能·华为云
几道之旅41 分钟前
mAP、AP50、AR50:目标检测中的核心评价指标解析
人工智能·目标检测·目标跟踪
搏博1 小时前
抗量子计算攻击的数据安全体系构建:从理论突破到工程实践
人工智能·人机交互·量子计算
白熊1881 小时前
【计算机视觉】OpenCV实战项目:GraspPicture 项目深度解析:基于图像分割的抓取点检测系统
人工智能·opencv·计算机视觉
python1561 小时前
OpenWebUI新突破,MCPO框架解锁MCP工具新玩法
人工智能·语言模型·自然语言处理
墨绿色的摆渡人2 小时前
pytorch小记(二十一):PyTorch 中的 torch.randn 全面指南
人工智能·pytorch·python
东临碣石822 小时前
【AI论文】EnerVerse-AC:用行动条件来构想具身环境
人工智能