利用scala书写spark程序实现wordCount

实验环境:虚拟机(centos)上创建了三台集群,部署了Hadoop,words文档放在HDFS上的目录下

所用版本如下:

<hadoop.version>2.7.7</hadoop.version>

<spark.version>2.4.5</spark.version>

<scala.version>2.12.10</scala.version>

步骤

代码详解

方法一:

scala 复制代码
object readData {
  def main(args: Array[String]): Unit = {
  	// 创建一个本地运行的 Spark 应用程序,并且设置了应用程序的名称为 "readData"
    val spark=SparkSession.builder().appName("readData").master("local[*]").getOrCreate();
    // HDFS目录路径
    val hdfsPath = "hdfs://你的节点ip:9000/路径/文件名";
    // 读取文本文件
    val lines = spark.read.textFile(hdfsPath).rdd
    // 单词计数
    val wordCounts = lines
      .flatMap(line => line.split(" ")) // 根据空格切分单词
      .map(word => (word, 1))
      .reduceByKey(_ + _)
    // 输出结果
    wordCounts.collect().foreach(println)
    // 停止 SparkSession
    spark.stop();
  }
}

方法二:

scala 复制代码
object readData {
  def main(args: Array[String]): Unit = {
    // HDFS目录路径
    val hdfsPath = "hdfs://你的节点ip:9000/路径/文件名";
	//1. 创建 conf 对象
    val conf = new SparkConf().setAppName("WordCount").setMaster("local[*]")
    //2. 创建 SparkContext 对象:提交应用的入口
    val sc = new SparkContext(conf)
    //3. 执行单词统计
    val res = sc.textFile(hdfsPath).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect;
    //4. 遍历输出结果
    res.foreach(println);
    // 停止 SparkSession
    sc.stop()
  }
}

说明:

  • 使用 SparkContext 和 SparkConf 是传统的方式,适用于 Spark 1.x 版本。它们提供了基本的 Spark 功能,但使用起来可能相对复杂,需要更多的配置和管理。
  • 使用 SparkSession 是 Spark 2.x 版本中推荐的方式。它集成了 Spark SQL,使得你可以更方便地使用 DataFrame 和 Dataset API 来处理结构化数据,而不需要额外导入其他的 API。此外,SparkSession 也可以自动管理 SparkContext,使得整个应用程序的管理更加简单。
  • flatMap 是一个转换操作,主要用于将结果扁平化(这里是将切分后的文本转换为多个单词作为输出)
  • map 是一个转换操作,它将输入RDD中的每个元素映射为一个新的元素(这里是映射为(key,1)键值对的形式)
  • reduceByKey 是一个转换操作,它将具有相同键的元素聚合在一起,并对它们的值进行合并
相关推荐
92745 分钟前
26 trait-多继承详解
scala
bigdata-rookie18 小时前
Spark 部署模式
大数据·分布式·spark
sheji34161 天前
【开题答辩全过程】以 基于Spark的药品库存可视化分析系统为例,包含答辩的问题和答案
大数据·分布式·spark
larance1 天前
spark-submit 常用方式
大数据·spark
A尘埃1 天前
Spark基于内存计算的数据处理
大数据·分布式·spark
渣渣盟1 天前
Flink分布式文件Sink实战解析
分布式·flink·scala·1024程序员节
-大头.1 天前
Scala全链路实战:零基础到生产级
开发语言·scala
bigdata-rookie2 天前
Flink Checkpoint 和 Spark Checkpoint 的区别
大数据·flink·spark
今天没有盐2 天前
Scala 访问权限详解:private、protected 与 private
scala
灯下夜无眠2 天前
conda打包环境上传spark集群
大数据·spark·conda