利用scala书写spark程序实现wordCount

实验环境:虚拟机(centos)上创建了三台集群,部署了Hadoop,words文档放在HDFS上的目录下

所用版本如下:

<hadoop.version>2.7.7</hadoop.version>

<spark.version>2.4.5</spark.version>

<scala.version>2.12.10</scala.version>

步骤

代码详解

方法一:

scala 复制代码
object readData {
  def main(args: Array[String]): Unit = {
  	// 创建一个本地运行的 Spark 应用程序,并且设置了应用程序的名称为 "readData"
    val spark=SparkSession.builder().appName("readData").master("local[*]").getOrCreate();
    // HDFS目录路径
    val hdfsPath = "hdfs://你的节点ip:9000/路径/文件名";
    // 读取文本文件
    val lines = spark.read.textFile(hdfsPath).rdd
    // 单词计数
    val wordCounts = lines
      .flatMap(line => line.split(" ")) // 根据空格切分单词
      .map(word => (word, 1))
      .reduceByKey(_ + _)
    // 输出结果
    wordCounts.collect().foreach(println)
    // 停止 SparkSession
    spark.stop();
  }
}

方法二:

scala 复制代码
object readData {
  def main(args: Array[String]): Unit = {
    // HDFS目录路径
    val hdfsPath = "hdfs://你的节点ip:9000/路径/文件名";
	//1. 创建 conf 对象
    val conf = new SparkConf().setAppName("WordCount").setMaster("local[*]")
    //2. 创建 SparkContext 对象:提交应用的入口
    val sc = new SparkContext(conf)
    //3. 执行单词统计
    val res = sc.textFile(hdfsPath).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect;
    //4. 遍历输出结果
    res.foreach(println);
    // 停止 SparkSession
    sc.stop()
  }
}

说明:

  • 使用 SparkContext 和 SparkConf 是传统的方式,适用于 Spark 1.x 版本。它们提供了基本的 Spark 功能,但使用起来可能相对复杂,需要更多的配置和管理。
  • 使用 SparkSession 是 Spark 2.x 版本中推荐的方式。它集成了 Spark SQL,使得你可以更方便地使用 DataFrame 和 Dataset API 来处理结构化数据,而不需要额外导入其他的 API。此外,SparkSession 也可以自动管理 SparkContext,使得整个应用程序的管理更加简单。
  • flatMap 是一个转换操作,主要用于将结果扁平化(这里是将切分后的文本转换为多个单词作为输出)
  • map 是一个转换操作,它将输入RDD中的每个元素映射为一个新的元素(这里是映射为(key,1)键值对的形式)
  • reduceByKey 是一个转换操作,它将具有相同键的元素聚合在一起,并对它们的值进行合并
相关推荐
qq_4084133917 小时前
spark 执行 hive sql数据丢失
hive·sql·spark
后端码匠17 小时前
Spark 单机模式部署与启动
大数据·分布式·spark
qq_4639448620 小时前
【Spark征服之路-2.3-Spark运行架构】
大数据·架构·spark
yt948321 天前
如何在IDE中通过Spark操作Hive
ide·hive·spark
不吃饭的猪2 天前
记一次spark在docker本地启动报错
大数据·docker·spark
Leo.yuan2 天前
实时数据仓库是什么?数据仓库设计怎么做?
大数据·数据库·数据仓库·数据分析·spark
£菜鸟也有梦2 天前
从0到1,带你走进Flink的世界
大数据·hadoop·flink·spark
小伍_Five2 天前
Spark实战能力测评模拟题精析【模拟考】
java·大数据·spark·scala·intellij-idea
不吃饭的猪2 天前
记一次运行spark报错
大数据·分布式·spark
qq_463944862 天前
【Spark征服之路-2.1-安装部署Spark(一)】
大数据·分布式·spark