算法部署总结

总体

后端算法才是未来,大号模型大参数才是未来。

以前总是执着于移动端,边缘端部署。

各种寻找小模型,边缘端优化技术,支持功能少,效果也没那么好。

眼光局限了。

这真是苦涩的教训阿。

OpenAI:与其执着于各种人工优化技巧,不如相信更大的算力(更多的参数和数据)。

https://www.bilibili.com/read/cv32692627/

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

当前(2024年3月29日),算法进步是很快的,现在不行的任务功能,过一段时间可能就行了。

想要完成某个功能任务,专门针对的算法没有,但是可以寻找其它通用算法来解决。

比如用sam,解决很多分割相关的任务。

用yolov8训练出来的算法检测人脸,比很多专门优化的人脸检测算法还好。

后端算法

相关推荐
每天都要写算法(努力版)26 分钟前
【神经网络与深度学习】五折交叉验证(5-Fold Cross-Validation)
人工智能·深度学习·神经网络
kyle~3 小时前
深度学习---框架流程
人工智能·深度学习
烟锁池塘柳05 小时前
【深度学习】评估模型复杂度:GFLOPs与Params详解
人工智能·深度学习
白熊1885 小时前
【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别
人工智能·深度学习·计算机视觉
毒果5 小时前
深度学习大模型: AI 阅卷替代人工阅卷
人工智能·深度学习
xMathematics7 小时前
深度学习与SLAM特征提取融合:技术突破与应用前景
人工智能·深度学习
蹦蹦跳跳真可爱5897 小时前
Python----深度学习(基于DNN的吃鸡预测)
python·深度学习·dnn
每天都要写算法(努力版)7 小时前
【神经网络与深度学习】批标准化(Batch Normalization)和层标准化(Layer Normalization)
深度学习·神经网络·batch
墨顿7 小时前
Transformer数学推导——Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
人工智能·深度学习·transformer·注意力机制·跨模态与多模态
xinxiyinhe7 小时前
2025年深度学习模型发展全景透视(基于前沿技术突破与开源生态演进的交叉分析)
人工智能·深度学习·开源