算法部署总结

总体

后端算法才是未来,大号模型大参数才是未来。

以前总是执着于移动端,边缘端部署。

各种寻找小模型,边缘端优化技术,支持功能少,效果也没那么好。

眼光局限了。

这真是苦涩的教训阿。

OpenAI:与其执着于各种人工优化技巧,不如相信更大的算力(更多的参数和数据)。

https://www.bilibili.com/read/cv32692627/

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

当前(2024年3月29日),算法进步是很快的,现在不行的任务功能,过一段时间可能就行了。

想要完成某个功能任务,专门针对的算法没有,但是可以寻找其它通用算法来解决。

比如用sam,解决很多分割相关的任务。

用yolov8训练出来的算法检测人脸,比很多专门优化的人脸检测算法还好。

后端算法

相关推荐
童话名剑3 分钟前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh20 分钟前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
wgfhill2 小时前
【多图转入场视频】一键生成专业级动画视频:多图入场特效批量创作工具
图像处理·视频
咚咚王者2 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习
逄逄不是胖胖2 小时前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
koo3643 小时前
pytorch深度学习笔记19
pytorch·笔记·深度学习
Sagittarius_A*4 小时前
角点检测:Harris 与 Shi-Tomasi原理拆解【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
哥布林学者4 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
A先生的AI之旅4 小时前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits5 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai