sklearn主成分分析PCA

文章目录

基本原理

PCA,即主成分分析(Principal components analysis),顾名思义就是把矩阵分解成简单的组分进行研究,而拆解矩阵的主要工具是线性变换,具体形式则是奇异值分解。

设有 m m m个 n n n维样本 X = ( x 1 , x 2 , ⋯   , x m ) X=(x_1, x_2,\cdots,x_m) X=(x1,x2,⋯,xm),但这 n n n个维度彼此并不完全独立,所以想试试有没有办法将其降低到 k k k维,则PCA的主要流程为

  1. 先将原始数据按列组成 n n n行 m m m列矩阵 X X X,然后对每一行数据进行中心化 x i j = x i j − 1 m ∑ j = 1 m x j x_{ij}=x_{ij}-\frac{1}{m}\sum^m_{j=1}x_j xij=xij−m1∑j=1mxj,记中心化之后的矩阵为 x ′ x' x′
  2. 计算样本协方差矩阵,由于已经中心化,故可表示为 C = 1 m X ′ X ′ T C=\frac{1}{m}X'X'^T C=m1X′X′T
  3. 计算协方差矩阵的特征值和特征向量,一般需要用到奇异值分解
  4. 对特征向量按照特征值大小进行排序,取前 k k k组特征向量组成矩阵 P P P,则 P X PX PX就是 k k k维的主成分

由于矩阵乘法的几何意义是坐标系的旋转、平移以及缩放,所以从几何角度理解PCA,就是将坐标系旋转到尽量与更多样本平行,从而达到简化坐标轴的作用。就好比一条空间中的直线,需要用三个维度来表示,但这条直线是一维的,只需旋转、移动坐标轴,使得这条直线与 x x x轴重合,就能只用一个坐标来表示这条直线。

PCA类

【PCA】类是sklearn.decomposition中用以实现主成分分析的类,其构造函数为

python 复制代码
PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)

各参数含义如下

  • n_components 组分个数,默认为样本数和特征数中较小的那个;如果输入为小数,则表示百分之几
  • copyFalse时,将覆盖原始数据。
  • whitenboolTrue时, 对组分矢量进行如下操作:先乘以样本的方根,然后除以奇异值
  • svd_solver 奇异值求解器,可选'auto', 'full', 'arpack', 'randomized'
  • tol 容忍度
  • random_state 用于设置随机数种子
  • power_iteration_normalizer 设置SVD分解方案,可选"LU", "QR", "auto", "none四种。当svd_solver设为arpack时不可用。

奇异值求解器共有4个选择, 其中full将调用scipy.linalg.svd,计算稠密矩阵比较快;arpack将调用scipy.sparse.linalg.svds,更擅长计算稀疏矩阵。二者的具体区别可见scipy奇异值分解💎稀疏矩阵SVD

图像降维与恢复

下面用scipy中经典的楼梯图像来测试一下主成分分析。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import decomposition

from scipy.misc import ascent
img = ascent()

sh = img.shape
ns = [256, 128, 64, 32, 16, 5]

imgs = [img]
for i in ns[1:]:
    pca = decomposition.PCA(i)
    # 彩色图像需要先转化为矩阵再进行PCA
    imNew = pca.fit_transform(img.reshape(sh[0], -1))
    im = pca.inverse_transform(imNew)
    imgs.append(im.reshape(sh))

fig = plt.figure()
for i, im in enumerate(imgs):
    ax = fig.add_subplot(231+i)
    ax.imshow(im)
    plt.title(str(ns[i]))
    plt.axis('off')

plt.show()

【fit_transform】对图像进行降维,保留相应组分并输出

【inverse_transofrm】对图像进行恢复,最终得到的效果如下,随着组分的逐渐降低,图像也越来越模糊。

相关推荐
跟橙姐学代码1 小时前
学Python像学做人:从基础语法到人生哲理的成长之路
前端·python
Keying,,,,1 小时前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵
桃源学社(接毕设)1 小时前
基于人工智能和物联网融合跌倒监控系统(LW+源码+讲解+部署)
人工智能·python·单片机·yolov8
yunhuibin2 小时前
pycharm2025导入anaconda创建的各个AI环境
人工智能·python
杨荧2 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
python-行者2 小时前
akamai鼠标轨迹
爬虫·python·计算机外设·akamai
R-G-B3 小时前
【P14 3-6 】OpenCV Python——视频加载、摄像头调用、视频基本信息获取(宽、高、帧率、总帧数)
python·opencv·视频加载·摄像头调用·获取视频基本信息·获取视频帧率·获取视频帧数
赵英英俊3 小时前
Python day46
python·深度学习·机器学习
weixin_307779135 小时前
AWS Lambda解压缩S3 ZIP文件流程
python·算法·云计算·aws
独行soc12 小时前
2025年渗透测试面试题总结-18(题目+回答)
android·python·科技·面试·职场和发展·渗透测试