sklearn主成分分析PCA

文章目录

基本原理

PCA,即主成分分析(Principal components analysis),顾名思义就是把矩阵分解成简单的组分进行研究,而拆解矩阵的主要工具是线性变换,具体形式则是奇异值分解。

设有 m m m个 n n n维样本 X = ( x 1 , x 2 , ⋯   , x m ) X=(x_1, x_2,\cdots,x_m) X=(x1,x2,⋯,xm),但这 n n n个维度彼此并不完全独立,所以想试试有没有办法将其降低到 k k k维,则PCA的主要流程为

  1. 先将原始数据按列组成 n n n行 m m m列矩阵 X X X,然后对每一行数据进行中心化 x i j = x i j − 1 m ∑ j = 1 m x j x_{ij}=x_{ij}-\frac{1}{m}\sum^m_{j=1}x_j xij=xij−m1∑j=1mxj,记中心化之后的矩阵为 x ′ x' x′
  2. 计算样本协方差矩阵,由于已经中心化,故可表示为 C = 1 m X ′ X ′ T C=\frac{1}{m}X'X'^T C=m1X′X′T
  3. 计算协方差矩阵的特征值和特征向量,一般需要用到奇异值分解
  4. 对特征向量按照特征值大小进行排序,取前 k k k组特征向量组成矩阵 P P P,则 P X PX PX就是 k k k维的主成分

由于矩阵乘法的几何意义是坐标系的旋转、平移以及缩放,所以从几何角度理解PCA,就是将坐标系旋转到尽量与更多样本平行,从而达到简化坐标轴的作用。就好比一条空间中的直线,需要用三个维度来表示,但这条直线是一维的,只需旋转、移动坐标轴,使得这条直线与 x x x轴重合,就能只用一个坐标来表示这条直线。

PCA类

【PCA】类是sklearn.decomposition中用以实现主成分分析的类,其构造函数为

python 复制代码
PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)

各参数含义如下

  • n_components 组分个数,默认为样本数和特征数中较小的那个;如果输入为小数,则表示百分之几
  • copyFalse时,将覆盖原始数据。
  • whitenboolTrue时, 对组分矢量进行如下操作:先乘以样本的方根,然后除以奇异值
  • svd_solver 奇异值求解器,可选'auto', 'full', 'arpack', 'randomized'
  • tol 容忍度
  • random_state 用于设置随机数种子
  • power_iteration_normalizer 设置SVD分解方案,可选"LU", "QR", "auto", "none四种。当svd_solver设为arpack时不可用。

奇异值求解器共有4个选择, 其中full将调用scipy.linalg.svd,计算稠密矩阵比较快;arpack将调用scipy.sparse.linalg.svds,更擅长计算稀疏矩阵。二者的具体区别可见scipy奇异值分解💎稀疏矩阵SVD

图像降维与恢复

下面用scipy中经典的楼梯图像来测试一下主成分分析。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import decomposition

from scipy.misc import ascent
img = ascent()

sh = img.shape
ns = [256, 128, 64, 32, 16, 5]

imgs = [img]
for i in ns[1:]:
    pca = decomposition.PCA(i)
    # 彩色图像需要先转化为矩阵再进行PCA
    imNew = pca.fit_transform(img.reshape(sh[0], -1))
    im = pca.inverse_transform(imNew)
    imgs.append(im.reshape(sh))

fig = plt.figure()
for i, im in enumerate(imgs):
    ax = fig.add_subplot(231+i)
    ax.imshow(im)
    plt.title(str(ns[i]))
    plt.axis('off')

plt.show()

【fit_transform】对图像进行降维,保留相应组分并输出

【inverse_transofrm】对图像进行恢复,最终得到的效果如下,随着组分的逐渐降低,图像也越来越模糊。

相关推荐
Jay_2729 分钟前
python项目如何创建docker环境
开发语言·python·docker
老胖闲聊1 小时前
Python Django完整教程与代码示例
数据库·python·django
爬虫程序猿1 小时前
利用 Python 爬虫获取淘宝商品详情
开发语言·爬虫·python
noravinsc1 小时前
django paramiko 跳转登录
后端·python·django
声声codeGrandMaster1 小时前
Django之表格上传
后端·python·django
元直数字电路验证1 小时前
Python数据分析及可视化中常用的6个库及函数(一)
python·numpy
waterHBO1 小时前
一个小小的 flask app, 几个小工具,拼凑一下
javascript·vscode·python·flask·web app·agent mode·vibe coding
智商不够_熬夜来凑1 小时前
anaconda安装playwright
开发语言·python
溜溜刘@♞1 小时前
python变量
python
丁值心2 小时前
6.01打卡
开发语言·人工智能·python·深度学习·机器学习