目录
- [1 介绍](#1 介绍)
- [2 训练](#2 训练)
1 介绍
本专题介绍使用floyd算法求解的题目。
使用floyd算法,可以求解如下问题:
- 最短路。
- 传递闭包。
- 找图中的距离总和最小的环路。
- 求恰好经过k条边的最短路。
floyd算法的原理讲解:基于动态规划。
状态表示 d[k,i,j]
:(1)集合:所有从i出发,最终走到j,且中间只经过结点编号不超过k的所有路径。(2)属性:路径长度的最小值。
状态计算 :(1)所有不含结点k的路径,即d[k-1,i,j]
。(2)所有包含结点k的路径,即d[k-1,i,k] + d[k-1,k,j]
。
状态转移为:d[k,i,j] = min(d[k-1,i,j], d[k-1,i,k] + d[k-1,k,j])
考虑优化掉第一维状态之后,有,
cpp
for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
2 训练
题目1 :1125牛的旅行
C++代码如下,
cpp
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define x first
#define y second
using namespace std;
typedef pair<double, double> PDD;
const int N = 155;
const double INF = 1e20;
int n;
PDD q[N];
double d[N][N];
double maxd[N];
char g[N][N];
double get_dist(PDD a, PDD b) {
double dx = a.x - b.x;
double dy = a.y - b.y;
return sqrt(dx * dx + dy * dy);
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> q[i].x >> q[i].y;
for (int i = 0; i < n; ++i) cin >> g[i];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i == j) d[i][j] = 0;
else if (g[i][j] == '1') d[i][j] = get_dist(q[i], q[j]);
else d[i][j] = INF;
}
}
for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
double r1 = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (d[i][j] < INF) {
maxd[i] = max(maxd[i], d[i][j]);
}
}
r1 = max(r1, maxd[i]);
}
double r2 = INF;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (d[i][j] >= INF) {
r2 = min(r2, maxd[i] + maxd[j] + get_dist(q[i], q[j]));
}
}
}
printf("%.6lf\n", max(r1, r2));
return 0;
}
题目2 :343排序
C++代码如下,
cpp
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 30;
bool st[N];
int dist[N][N];
int n, m;
void floyd() {
for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (dist[i][k] == 1 && dist[k][j] == 1) {
dist[i][j] = 1;
}
}
}
}
return;
}
int get_type() {
for (int i = 0; i < n; ++i) {
if (dist[i][i] == 1) {
return 2; //有冲突
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j) {
if (dist[i][j] == 0 && dist[j][i] == 0) {
return 0; //无解
}
}
}
}
return 1; //有解
}
char get_min() {
int t = -1; //没有走到i的结点
for (int i = 0; i < n; ++i) {
if (st[i]) continue;
//i是不是我们要输出的答案
bool flag = true;
for (int j = 0; j < n; ++j) {
if (i != j) {
if (st[j] == false && dist[j][i] == 1) {
flag = false;
break;
}
}
}
if (flag) {
t = i;
st[t] = true;
return 'A' + t;
}
}
return '#';
}
int main() {
while (cin >> n >> m) {
if (n == 0 && m == 0) break;
memset(dist, 0, sizeof dist);
int type = 0;
int iter = -1;
for (int i = 0; i < m; ++i) {
string t;
cin >> t;
int a = t[0] - 'A', b = t[2] - 'A';
if (type == 0) {
dist[a][b] = 1;
floyd();
type = get_type();
if (type != 0) {
iter = i + 1;
}
}
}
//输出答案
if (type == 0) {
printf("Sorted sequence cannot be determined.\n");
} else if (type == 2) {
printf("Inconsistency found after %d relations.\n", iter);
} else if (type == 1) {
printf("Sorted sequence determined after %d relations: ", iter);
memset(st, 0, sizeof st);
for (int i = 0; i < n; ++i) {
cout << get_min();
}
cout << "." << endl;
}
}
return 0;
}
题目3 :344观光之旅
C++代码如下,
cpp
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110, INF = 0x3f3f3f3f;
int n, m;
int d[N][N], g[N][N];
int pos[N][N];
int path[N], cnt;
void get_path(int i, int j) {
if (pos[i][j] == 0) return;
int k = pos[i][j];
get_path(i, k);
path[cnt++] = k;
get_path(k, j);
}
int main() {
cin >> n >> m;
memset(g, 0x3f, sizeof g);
for (int i = 1; i <= n; ++i) g[i][i] = 0;
while (m--) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
int res = INF;
memcpy(d, g, sizeof d);
for (int k = 1; k <= n; ++k) {
for (int i = 1; i < k; ++i) {
for (int j = i + 1; j < k; ++j) {
if ((long long)d[i][j] + g[j][k] + g[k][i] < res) {
res = d[i][j] + g[j][k] + g[k][i];
cnt = 0;
path[cnt++] = k;
path[cnt++] = i;
get_path(i, j);
path[cnt++] = j;
}
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
if (d[i][j] > d[i][k] + d[k][j]) {
d[i][j] = d[i][k] + d[k][j];
pos[i][j] = k;
}
}
}
}
if (res == INF) puts("No solution.");
else {
for (int i = 0; i < cnt; ++i) cout << path[i] << ' ';
cout << endl;
}
return 0;
}
题目4 :345牛站
C++代码如下,
cpp
#include <cstring>
#include <iostream>
#include <algorithm>
#include <map>
using namespace std;
const int N = 210;
int k, n, m, S, E;
int g[N][N];
int res[N][N];
void mul(int c[][N], int a[][N], int b[][N]) {
static int temp[N][N];
memset(temp, 0x3f, sizeof temp);
for (int k = 1; k <= n; ++k) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
temp[i][j] = min(temp[i][j], a[i][k] + b[k][j]);
}
}
}
memcpy(c, temp, sizeof temp);
return;
}
void qmi() {
memset(res, 0x3f, sizeof res);
for (int i = 1; i <= n; ++i) res[i][i] = 0;
while (k) {
if (k & 1) mul(res, res, g);
mul(g, g, g);
k >>= 1;
}
}
int main() {
cin >> k >> m >> S >> E;
memset(g, 0x3f, sizeof g);
map<int, int> ids;
if (!ids.count(S)) ids[S] = ++n;
if (!ids.count(E)) ids[E] = ++n;
S = ids[S];
E = ids[E];
while (m--) {
int a, b, c;
cin >> c >> a >> b;
if (!ids.count(a)) ids[a] = ++n;
if (!ids.count(b)) ids[b] = ++n;
a = ids[a];
b = ids[b];
g[a][b] = g[b][a] = min(g[a][b], c);
}
qmi();
cout << res[S][E] << endl;
return 0;
}