spark3.x新特性

Adaptive Query Execution自适应查询(SparkSQL)

由于缺乏或者不准确的数据统计信息(元数据)和对成本的错误估算(执行计划调度)导致生成的初始执行计划不理想

在Spark3.x版本提供Adaptive Query Execution自适应查询技术

通过在"运行时"对查询执行计划进行优化,允许Planner在运行时执行可选计划,这些可选计划将会基于运行时数据

统计进行动态优化,从而提高性能.

Adaptive Query Execution AQE主要提供了三个自适应优化:

  • 动态合并Shuffle Partitions

    可以动态调整shuffle分区的数量。用户可以在开始时设置相对较多的shuffle分区数,AQE会在运行时将相邻的小分区合并为较大的分区。

  • 动态调整Join策略

    此优化可以在一定程度上避免由于缺少统计信息或着错误估计大小(当然也可能两种情况同时存在),而导致执行计划性能不佳的情况,比如某个join操作中其中一个数据集很小,通过网络io的shuffle次数会比较多。这种自适应优化可以在运行时sort merge join转换成broadcast hash join,从而进一步提升性能,也就是我们之前提到的将小数据集发送到各executor的线程中

  • 动态优化倾斜Join(Skew Joins)

    skew joins可能导致负载的极端不平衡,并严重降低性能。在AQE从shuffle文件统计信息中检测到任何倾斜后,它可以将倾斜的分区分割成更小的分区,并将它们与另一侧的相应分区连接起来。这种优化可以并行化倾斜处理,获得更好的整体性能。A0分组的数据量比较大,会动态给它拆分,达到各分组数据集大小平衡

触发条件:

l.分区大小>spark.sql.adaptive.skewJoin.skewedPartitionFactor(default:=lO)*"median partition size(中位数分区大小)

2.分区大小>spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes(default=256MB)

开启AQE方式

set spark.sql.adaptive.enabled true;

总的来看,我们无需人为设置复杂参数,只需设置AQE,spark就可以自动化优化sparksql查询

动态分区裁剪

该特性无需人为开启,spark3.x会根据具体sparksql语句来实现分区数的动态裁剪,提升性能

koalas API

该api是为了让开发者能在分布式环境中,模拟pandas数据处理,更高效地处理大数据,弥补pandas仅限单节点运行的缺点,我们python开发者就有两种编程选择,pyspark和koalas

相关推荐
计算机毕业设计木哥37 分钟前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
T06205141 小时前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔1 小时前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 小时前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂3 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工3 小时前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5
广州腾科助你拿下华为认证5 小时前
华为考试:HCIE数通考试难度分析
大数据·华为
在未来等你7 小时前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试
大数据CLUB10 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
ratbag67201310 小时前
当环保遇上大数据:生态环境大数据技术专业的课程侧重哪些领域?
大数据