spark3.x新特性

Adaptive Query Execution自适应查询(SparkSQL)

由于缺乏或者不准确的数据统计信息(元数据)和对成本的错误估算(执行计划调度)导致生成的初始执行计划不理想

在Spark3.x版本提供Adaptive Query Execution自适应查询技术

通过在"运行时"对查询执行计划进行优化,允许Planner在运行时执行可选计划,这些可选计划将会基于运行时数据

统计进行动态优化,从而提高性能.

Adaptive Query Execution AQE主要提供了三个自适应优化:

  • 动态合并Shuffle Partitions

    可以动态调整shuffle分区的数量。用户可以在开始时设置相对较多的shuffle分区数,AQE会在运行时将相邻的小分区合并为较大的分区。

  • 动态调整Join策略

    此优化可以在一定程度上避免由于缺少统计信息或着错误估计大小(当然也可能两种情况同时存在),而导致执行计划性能不佳的情况,比如某个join操作中其中一个数据集很小,通过网络io的shuffle次数会比较多。这种自适应优化可以在运行时sort merge join转换成broadcast hash join,从而进一步提升性能,也就是我们之前提到的将小数据集发送到各executor的线程中

  • 动态优化倾斜Join(Skew Joins)

    skew joins可能导致负载的极端不平衡,并严重降低性能。在AQE从shuffle文件统计信息中检测到任何倾斜后,它可以将倾斜的分区分割成更小的分区,并将它们与另一侧的相应分区连接起来。这种优化可以并行化倾斜处理,获得更好的整体性能。A0分组的数据量比较大,会动态给它拆分,达到各分组数据集大小平衡

触发条件:

l.分区大小>spark.sql.adaptive.skewJoin.skewedPartitionFactor(default:=lO)*"median partition size(中位数分区大小)

2.分区大小>spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes(default=256MB)

开启AQE方式

set spark.sql.adaptive.enabled true;

总的来看,我们无需人为设置复杂参数,只需设置AQE,spark就可以自动化优化sparksql查询

动态分区裁剪

该特性无需人为开启,spark3.x会根据具体sparksql语句来实现分区数的动态裁剪,提升性能

koalas API

该api是为了让开发者能在分布式环境中,模拟pandas数据处理,更高效地处理大数据,弥补pandas仅限单节点运行的缺点,我们python开发者就有两种编程选择,pyspark和koalas

相关推荐
驭白.1 分钟前
不止于自动化:新能源汽车智造的数字基座如何搭建?
大数据·人工智能·自动化·汽车·数字化转型·制造业
扉间7981 分钟前
合并后的项目 上传分支 取哪里的东西提交
大数据·chrome·elasticsearch
企业智能研究21 分钟前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
雪兽软件1 小时前
您需要了解的顶级大数据技术
大数据
2501_941871452 小时前
面向微服务链路追踪与全局上下文管理的互联网系统可观测性设计与多语言工程实践分享
大数据·数据库·python
XC131489082672 小时前
ToB获客破局:精准数据+AI外呼,重构效率新模式
大数据·人工智能·重构
小龙2 小时前
[Git 报错解决]本地分支落后于远程分支(`non-fast-forward`)
大数据·git·elasticsearch·github
2501_941809142 小时前
在圣保罗智能物流场景中构建快递实时调度与高并发任务管理平台的工程设计实践经验分享
大数据·人工智能
阿里云大数据AI技术3 小时前
迅雷基于阿里云 EMR Serverless Spark 实现数仓资源效率与业务提升
spark
QYZL_AIGC3 小时前
全域众链AI赋能实体,开启数字化转型新生态
大数据·人工智能