pytorch中nn.GroupNorm()作用及参数说明

数据归一化的作用,特点是分组归一化,每个组独立进行归一化处理。

torch.nn.GroupNorm(num_groups,num_channels)

num_groups:组数

num_channels:通道数量

对num_channels这么多个通道分成num_groups个组分别进行归一化

nn.GroupNorm是一个用于定义分组归一化层的类。分组归一化层是一种用于规范化输入数据的技术,常用于深度神经网络中。

nn.GroupNorm创建了一个分组归一化层对象,可以用于前向传播运算。该层将输入数据分成多个组并分别计算每个组的均值和方差。然后,使用这些均值和方差来对每个组的元素进行归一化。最后,如果启用了仿射变换,将对归一化结果应用可学习的仿射变换(线性变换)。

相比于批归一化(nn.BatchNorm2d()),分组归一化的特点在于将通道分组,使得每个组都有独立的统计量。这在一些较小批次大小的情况下可能更稳定,并且适用于较小的模型或具有较少参数的模型。同时,由于对通道进行分组,分组归一化还可以保持通道之间的相对关系,适用于一些需求特定结构的网络设计。

相关推荐
2501_9415079411 小时前
脊柱结构异常检测与分类:基于Cascade-RCNN和HRNetV2p-W32模型的改进方案
人工智能·分类·数据挖掘
珊珊而川11 小时前
MBE(Model-based Evaluation) LLM-as-a-Judge
人工智能
想用offer打牌11 小时前
Spring AI vs Spring AI Alibaba
java·人工智能·后端·spring·系统架构
qwerasda12385211 小时前
车辆超载检测系统:基于YOLO11-C3k2-RFCAConv的高精度识别模型实现与性能评估_1
人工智能
Coco恺撒11 小时前
【脑机接口】难在哪里,【人工智能】如何破局(1.用户篇)
人工智能·深度学习·开源·生活·人机交互·智能家居
sunlifenger11 小时前
上海兆越人员定位系统,多元技术赋能,精准守护工业安全
网络·人工智能·安全
没学上了11 小时前
Vlm-Swim Transformer迁移学习
深度学习·transformer·迁移学习
HXDGCL11 小时前
大会观察 | 破除创新链堵点:论“工厂直供”模式如何加速自动化核心部件迭代
大数据·人工智能·自动化·自动化生产线·环形导轨
梵得儿SHI11 小时前
(第八篇)Spring AI 核心技术攻坚:模型评估与调优 - 提升 AI 响应质量的双轮驱动实践
人工智能
果粒蹬i11 小时前
生成式 AI 质量控制:幻觉抑制与 RLHF 对齐技术详解
前端·人工智能·easyui