pytorch中nn.GroupNorm()作用及参数说明

数据归一化的作用,特点是分组归一化,每个组独立进行归一化处理。

torch.nn.GroupNorm(num_groups,num_channels)

num_groups:组数

num_channels:通道数量

对num_channels这么多个通道分成num_groups个组分别进行归一化

nn.GroupNorm是一个用于定义分组归一化层的类。分组归一化层是一种用于规范化输入数据的技术,常用于深度神经网络中。

nn.GroupNorm创建了一个分组归一化层对象,可以用于前向传播运算。该层将输入数据分成多个组并分别计算每个组的均值和方差。然后,使用这些均值和方差来对每个组的元素进行归一化。最后,如果启用了仿射变换,将对归一化结果应用可学习的仿射变换(线性变换)。

相比于批归一化(nn.BatchNorm2d()),分组归一化的特点在于将通道分组,使得每个组都有独立的统计量。这在一些较小批次大小的情况下可能更稳定,并且适用于较小的模型或具有较少参数的模型。同时,由于对通道进行分组,分组归一化还可以保持通道之间的相对关系,适用于一些需求特定结构的网络设计。

相关推荐
weixin_509138341 分钟前
智能体认知动力学理论和实践
人工智能·智能体·语义空间·认知动力学
玄同7652 分钟前
机器学习中的三大距离度量:欧式距离、曼哈顿距离、切比雪夫距离详解
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
第七序章2 分钟前
【Linux学习笔记】初识Linux —— 理解gcc编译器
linux·运维·服务器·开发语言·人工智能·笔记·学习
格林威3 分钟前
Baumer相机水果表皮瘀伤识别:实现无损品质分级的 7 个核心方法,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·视觉检测·工业相机·sdk开发·堡盟相机
rainbow7242444 分钟前
AI证书选型深度分析:如何根据职业目标评估其真正价值
人工智能·机器学习
AI科技星6 分钟前
从ZUFT光速螺旋运动求导推出自然常数e
服务器·人工智能·线性代数·算法·矩阵
love530love8 分钟前
Windows 下 GCC 编译器安装与排错实录
人工智能·windows·python·gcc·msys2·gtk·msys2 mingw 64
倔强的石头1069 分钟前
归纳偏好 —— 机器学习的 “择偶标准”
人工智能·机器学习
zhangshuang-peta9 分钟前
通过MCP实现安全的多渠道人工智能集成
人工智能·ai agent·mcp·peta
听麟10 分钟前
HarmonyOS 6.0+ APP AR文旅导览系统开发实战:空间定位与文物交互落地
人工智能·深度学习·华为·ar·wpf·harmonyos