pytorch中nn.GroupNorm()作用及参数说明

数据归一化的作用,特点是分组归一化,每个组独立进行归一化处理。

torch.nn.GroupNorm(num_groups,num_channels)

num_groups:组数

num_channels:通道数量

对num_channels这么多个通道分成num_groups个组分别进行归一化

nn.GroupNorm是一个用于定义分组归一化层的类。分组归一化层是一种用于规范化输入数据的技术,常用于深度神经网络中。

nn.GroupNorm创建了一个分组归一化层对象,可以用于前向传播运算。该层将输入数据分成多个组并分别计算每个组的均值和方差。然后,使用这些均值和方差来对每个组的元素进行归一化。最后,如果启用了仿射变换,将对归一化结果应用可学习的仿射变换(线性变换)。

相比于批归一化(nn.BatchNorm2d()),分组归一化的特点在于将通道分组,使得每个组都有独立的统计量。这在一些较小批次大小的情况下可能更稳定,并且适用于较小的模型或具有较少参数的模型。同时,由于对通道进行分组,分组归一化还可以保持通道之间的相对关系,适用于一些需求特定结构的网络设计。

相关推荐
数字游民95279 小时前
小程序上新,猜对了么更新110组素材
人工智能·ai·小程序·ai绘画·自媒体·数字游民9527
泰迪智能科技9 小时前
分享|联合编写教材入选第二批“十四五”职业教育国家规划教材名单
大数据·人工智能
Yongqiang Cheng9 小时前
PyTorch Grid Sample
pytorch·grid sample
模型时代9 小时前
热力学计算技术或将大幅降低AI图像生成能耗
人工智能
企业老板ai培训9 小时前
从九尾狐AI实战案例拆解AI短视频获客的架构设计:智能矩阵如何提升企业效率?
人工智能
龙腾AI白云9 小时前
知识图谱如何在制造业实际落地应用
人工智能·知识图谱
力学与人工智能9 小时前
“高雷诺数湍流数据库的构建及湍流机器学习集成研究”湍流重大研究计划集成项目顺利结题
数据库·人工智能·机器学习·高雷诺数·湍流·重大研究计划·项目结题
娟宝宝萌萌哒9 小时前
智能体设计模式重点
人工智能·设计模式
gsgbgxp9 小时前
WSL迁移至非系统盘
深度学习·ubuntu
乾元10 小时前
绕过艺术:使用 GANs 对抗 Web 防火墙(WAF)
前端·网络·人工智能·深度学习·安全·架构