微生物群落关键种识别:一种不依赖于网络的自上而下的方法

微生物群落在促进养分循环、协助植物生长、维持人体健康等方面发挥着重要的作用。群落关键种对维持微生物群落稳定性具有重要影响,识别关键种一直是微生物生态学中的热点话题。识别关键种主要有两种框架:数据驱动的方法(data driven method)去除实验(perturbation experiment)。其中数据驱动的方法主要有三种:

  • 基于共现网络的方法
  • top-down方法
  • 基于深度学习的方法

注意:数据驱动的方法确定的关键种只是可能的关键种,还需要通过去除实验进一步地验证。

  • 基于共现网络的方法主要包括:构建共现网络→划分模块→计算模块间连通度和模块内连通度→确定关键种,该方法已在之前的博客中有所介绍:计算网络节点模块内连通度(within modular degree)和模块间连通度(between modular degree)
  • 基于深度学习的方法:这里先做个预告,代码和数据都整理好了,预计下周上线,具体可参考论文Identifying keystone species in microbial communities using deep learning
  • 本文主要介绍top-down方法,该方法源于论文:Top-down identification of keystone taxa in the microbiome。该方法通过计算Empirical Presence-abundance Interrelation (EPI)来衡量物种的重要性。

EPI指标计算的流程是:

  1. 根据物种i的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 然后计算组和组的距离,即该物种的重要性,EPI;
  4. 物种EPI高于平均值+两个标准差的物种可以确定为关键种。

这里的某物种 i i i 的EPI有三种衡量方法:

D 1 i {D}_{1}^{i} D1i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算组和组样品的两两间的Bray-Crutis距离。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品的两两间的距离矩阵为:
ID A B C
D xxx xxx xxx
E xxx xxx xxx
  1. 然后取该矩阵的平均值,即为 D 1 i {D}_{1}^{i} D1i

计算 D 1 i {D}_{1}^{i} D1i R代码如下:

复制代码
EPI_D1 <- function(S) {
  library(vegan)
  # Initialization
  N <- nrow(S)
  M <- ncol(S)
  S_01 <- ifelse(S>0,1,0)
  D1 <- rep(NA, N)
  
  for (i in 1:N) {
    # If the species is always present/absent, D1 is undefined
    if (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {
      print(i)
      ind_pres <- S_01[i, ] != 0
      S2 <- S[-i, , drop = FALSE]
      S2 <- S2 / colSums(S2)
      bc <- as.matrix(vegdist(t(S2)))
      bc2 <- bc[ind_pres,!ind_pres]
      D1[i] <- sum(bc2) / (sum(ind_pres) * sum(!ind_pres))
    }
  }
  return(D1)
}

D 2 i {D}_{2}^{i} D2i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 分别计算组和组样品的平均物种组成,获得 P ‾ \overline P P (P: Presence)和 A ‾ \overline A A (A: Absence),然后计算两者的平均值。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品平均值如下:
ID A B C P ‾ \overline P P
taxa1 x1 x2 x3 average(x1,x2,x3)
taxa2 y1 y2 y3 average(y1,y2,y3)
taxa3 z1 z2 z3 average(z1,z2,z3)
ID C D A ‾ \overline A A
taxa1 x1 x2 average(x1,x2)
taxa2 y1 y2 average(y1,y2)
taxa3 z1 z2 average(z1,z2)
  1. 然后计算 P ‾ \overline P P和 A ‾ \overline A A的Bray-Crutis距离,即为 D 2 i {D}_{2}^{i} D2i

计算 D 2 i {D}_{2}^{i} D2i R代码如下:

复制代码
EPI_D2 <- function(S) {
  N <- nrow(S)
  M <- ncol(S)
  S_01 <- ifelse(S>0,1,0)
  D2 <- rep(NA, N)
  
  for (i in 1:N) {
    # If the species is always present/absent, D2 is undefined
    if (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {
      print(i)
      # Dividing into the two groups
      ind_pres <- S_01[i, ] != 0
      S_pres <- as.matrix(S[, ind_pres])
      S_abs <- as.matrix(S[, !ind_pres])
      
      # Removing the i species
      S_pres <- S_pres[-i, , drop = FALSE]
      S_abs <- S_abs[-i, , drop = FALSE]
      
      # Normalizing
      S_pres <- S_pres / colSums(S_pres)
      S_abs <- S_abs / colSums(S_abs)
      
      # Calculating D2
      D2[i] <- vegdist(rbind(rowMeans(S_pres), rowMeans(S_abs)))[1]
    }
  }
  return(D2)
}

Q i {Q}^{i} Qi 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算样品间的Bray-Crutis距离;
  4. 设定一定的阈值,构建样品-样品的网络,这里网络中的节点代表样品;
  5. 对网络中的节点(代表样品)赋予模块,例如:模块1代表模块2代表
  6. 计算该网络的模块度(modularity),即为 Q i {Q}^{i} Qi

计算 Q i {Q}^{i} Qi 的R代码如下:

复制代码
EPI_Q <- function(S, threshold_net) {
  N <- nrow(S)
  M <- ncol(S)
  S_01 <- ifelse(S > 0,1,0)
  Q <- rep(NA, N)
 
  modularity <- function(B, s) {
    library(igraph)
    B_graph <- graph.adjacency(B, mode = "undirected")
    d <- degree(B_graph) # Degree of each sample
    q <- sum(B) / 2
    Qmod <- (t(s) %*% (B - (d %*% t(d)) / (2 * q)) %*% s) / (4 * q)
    return(Qmod)
  }
  
  for (i in 1:N) {
    # If the species is always present/absent, Q is undefined
    if (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {
      print(i)
      # Removing the i species
      S_i <- S[-i,]
      
      # Normalizing
      S_i <- S_i / colSums(S_i)
      
      # Building the network
      distances_i <- as.matrix(vegdist(t(S_i)))
      dist_threshold <- quantile(distances_i, threshold_net)
      B_i <- as.matrix(distances_i <= dist_threshold)
      diag(B_i) <- 0
      s_i <- as.numeric(S_01[i, ])
      s_i[s_i == 0] <- -1
      
      # Calculating
      Q[i] <- modularity(B_i, s_i)
    }
  }
  
  return(Q)
}

更多测试数据及R代码可参考如下连接:https://mbd.pub/o/bread/ZZ2bm5hx

相关推荐
viperrrrrrrrrr75 小时前
大数据学习(105)-Hbase
大数据·学习·hbase
行思理7 小时前
go语言应该如何学习
开发语言·学习·golang
oceanweave8 小时前
【k8s学习之CSI】理解 LVM 存储概念和相关操作
学习·容器·kubernetes
吴梓穆10 小时前
UE5学习笔记 FPS游戏制作43 UI材质
笔记·学习·ue5
学会870上岸华师10 小时前
c语言学习16——内存函数
c语言·开发语言·学习
XYN6110 小时前
【嵌入式面试】
笔记·python·单片机·嵌入式硬件·学习
啊哈哈哈哈哈啊哈哈10 小时前
R3打卡——tensorflow实现RNN心脏病预测
人工智能·深度学习·学习
KangkangLoveNLP11 小时前
深度探索:策略学习与神经网络在强化学习中的应用
人工智能·深度学习·神经网络·学习·机器学习·自然语言处理
穷儒公羊12 小时前
第一部分——Docker篇 第六章 容器监控
运维·后端·学习·docker·云原生·容器
CAE虚拟与现实12 小时前
记录一下学习docker的命令(不断补充中)
学习·docker·容器·容器化·docker部署·docker命令