时序预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测

目录

    • [时序预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测](#时序预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测)

效果一览








基本介绍

1.Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测(完整源码和数据)

2.运行环境为Matlab2021b;

3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;

代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

f_ = size(P_train, 1);                  % 输入特征维度

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161

[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
机器学习之心8 天前
时序预测 | 改进图卷积+informer时间序列预测,pytorch架构
人工智能·pytorch·python·时间序列预测·informer·改进图卷积
矩阵猫咪17 天前
【深度学习】时间序列预测、分类、异常检测、概率预测项目实战案例
人工智能·pytorch·深度学习·神经网络·机器学习·transformer·时间序列预测
机器学习之心17 天前
时序预测 | Matlab基于TSA-LSTM-Attention被囊群优化算法优化长短期记忆网络融合注意力机制多变量多步时间序列预测
时间序列预测·lstm-attention·融合注意力机制·多变量多步·tsa-lstm·被囊群优化算法优化
阡之尘埃20 天前
Python数据分析案例62——基于MAGU-LSTM的时间序列预测(记忆增强门控单元)
人工智能·python·深度学习·机器学习·数据分析·lstm·时间序列预测
Cyril_KI1 个月前
PyTorch搭建GNN(GCN、GraphSAGE和GAT)实现多节点、单节点内多变量输入多变量输出时空预测
pytorch·时间序列预测·gnn·时空预测
机器学习之心2 个月前
时序预测 | Matlab实现GA-CNN遗传算法优化卷积神经网络时间序列预测
时间序列预测·ga-cnn·遗传算法优化卷积神经网络
机器学习之心2 个月前
时序预测 | Matlab实现PSO-CNN粒子群优化卷积神经网络时间序列预测
matlab·cnn·时间序列预测·pso-cnn·粒子群优化卷积神经网络
机器学习之心2 个月前
多维时序 | Matlab基于TCN-Transformer+LSTM双输入神经网络时间序列预测
神经网络·matlab·lstm·transformer·时间序列预测·tcn-transformer
少喝冰美式3 个月前
时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt
人工智能·自然语言处理·llm·nlp·prompt·时间序列预测·ai大模型
顶呱呱程序4 个月前
2-34 小波神经网络采用传统 BP 算法
人工智能·神经网络·算法·matlab·时间序列预测·遗传算法优化小波神经网络·ga-wnn预测算法