【论文速读】| MASTERKEY:大语言模型聊天机器人的自动化越狱

本次分享论文为:MASTERKEY: Automated Jailbreaking of Large Language Model Chatbots

基本信息

**原文作者:**Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu Wang, Tianwei Zhang, Yang Liu

**作者单位:**南洋理工大学、新南威尔士大学、华中科技大学、弗吉尼亚理工大学

**关键词:**大语言模型,聊天机器人,自动化测试,安全性评估

原文链接:

https://arxiv.org/pdf/2307.08715.pdf

**开源代码:**暂无

论文要点

**论文简介:**本论文介绍了一个称为MASTERKEY的端到端的框架,其目标是探索越狱攻击和防御背后的整合机制。通过深入的实证分析,研究人员指出,对于当前流行的LLM聊天机器人,现有的安全越狱手段效果不佳。因此,他们提出了一个创新的基于时间特征分析的方法,用以识别并规避服务供应商实施的保护措施。MASTERKEY不仅成功揭示了LLM聊天机器人潜在的安全弱点,而且还能自动生成有效的越狱指令,即jailbreak prompts,从而显著提升了越狱操作的成功率。

**研究背景:**随着大语言模型(LLM)聊天机器人越来越多地被应用于多个领域,确保它们的安全性并防止敏感或有害信息泄露已迫在眉睫。研究人员通过进行所谓的"越狱"(jailbreaking)实验,旨在测试这些系统并揭示它们可能存在的安全隐患。

研究贡献:

1.逆向工程未公开的防御机制:本研究采用了一种创新方法来揭示大语言模型(LLM)聊天机器人的防御策略内部工作原理,为研究者提供了对其安全措施的深入理解。

2.绕过LLM防御:研究人员利用对LLM聊天机器人防御机制的新认识,通过策略性地调整对时间敏感的响应,成功地绕过了这些防御机制,并揭示了以前被忽视的安全漏洞。

3.自动化越狱生成:本文展示了一种创新且高效的策略,利用细致调校的LLM自动生成越狱提示,开辟了研究新路径。

4.越狱技术的模式和LLM通用化:提出了一种能够跨越不同模式和LLM聊天机器人的越狱技巧,强调了这些技术的通用性和对未来研究的潜在重大影响。

引言

在这个数字技术飞速进步的时代,大语言模型(LLM)聊天机器人已经成为人工智能界的焦点话题。这些机器人能够创造出类似人类的文本,被广泛用于客户服务、教育、娱乐等诸多领域。与此同时,如何确保这些聊天机器人的安全性、防止它们通过特定的输入被恶意用户"越狱"以泄露敏感或有害信息,成为了一个紧迫的问题。尽管之前的研究尝试了对特定LLM聊天机器人的安全防护进行测试,但缺少了一个既通用又能自动化进行测试的方法。MASTERKEY的开发正是为了解决这个问题,它通过自动化产生越狱性提示,能够高效且广泛地评估LLM聊天机器人的安全性。

背景知识

作为人工智能领域的一项创新,大语言模型(LLM)聊天机器人能够处理自然语言输入并提供类似人类的回复。它们大大便利了用户,但同时带来了一种名为"越狱攻击"的新型安全风险。这类攻击利用精心设计的输入提示(prompts)来诱导聊天机器人违背其使用政策,从而泄漏敏感或有害信息。为了防止这种攻击,各大服务提供商实施了多种防御机制。然而,这些机制的有效性及其具体的实施方式大多数情况下保持不公开。

论文方法

**理论背景:**MASTERKEY通过深入分析现有大语言模型(LLM)聊天机器人的安全测试成果,发现了时间特性作为一种关键因素,能够有效揭示聊天机器人的防御策略。

**方法实现:**基于对时间特性的洞察,MASTERKEY设计了一套独特的策略,能够准确预测聊天机器人的安全机制。利用这些洞见,它能够自动化地产生越狱性的提示,成功规避了聊天机器人的防御系统。

实验

**实验设置:**为了全面评估MASTERKEY的性能,研究团队精心挑选了包括CHATGPT、Bard和Bing Chat在内的几款领先的大语言模型(LLM)聊天机器人进行测试。这一系列实验旨在深入探究MASTERKEY框架的实际应用效果。

**实验结果:**相较于传统的手动设计越狱提示,MASTERKEY自动生成的提示成功率有了显著提升。尤其值得注意的是,对于Bard和Bing Chat这两个平台,MASTERKEY实现了前所未有的越狱成功,从而验证了其卓越的自动化测试能力和实用价值。

论文结论

在本研究中,研究者对当下领先的大语言模型(LLM)聊天机器人服务进行了细致的评价,揭露了它们在面对越狱攻击时的明显薄弱环节。他们引入了一个创新性的框架,名为MASTERKEY,它旨在加深越狱攻击与防御策略之间的技术较量。通过运用基于时间分析的方法,MASTERKEY能够逆向工程并揭示LLM聊天机器人当前采用的防御机制,提供了深刻的新洞见。此外,MASTERKEY还采用了一种自动化技术来生成能够普遍应用的越狱提示,使得在各大主流聊天机器人服务中的平均越狱成功率达到了21.58%。

原作者:论文解读智能体

润色:Fancy

校对:小椰风

相关推荐
Guofu_Liao6 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
Robot25110 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
sp_fyf_202413 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
FreeIPCC13 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
坐公交也用券14 小时前
使用Python3实现Gitee码云自动化发布
运维·gitee·自动化
龙的爹233315 小时前
论文翻译 | RECITATION-AUGMENTED LANGUAGE MODELS
人工智能·语言模型·自然语言处理·prompt·gpu算力
sp_fyf_202415 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
施努卡机器视觉16 小时前
电解车间铜业机器人剥片技术是现代铜冶炼过程中自动化和智能化的重要体现
运维·机器人·自动化
徐浪老师16 小时前
深入实践 Shell 脚本编程:高效自动化操作指南
运维·chrome·自动化
King's King16 小时前
自动化立体仓库:详解
运维·自动化