Tensorflow2.0笔记 - 自定义Layer和Model

本笔记主要记录如何在tensorflow中实现自定的Layer和Model。详细内容请参考代码中的链接。

import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

tf.__version__
#关于自定义layer和自定义Model的相关介绍,参考下面的链接:
#https://tf.wiki/zh_hans/basic/models.html
#https://blog.csdn.net/lzs781/article/details/104741958


#自定义Dense层,继承自Layer
class MyDense(layers.Layer):
    #需要实现__init__和call方法
    def __init__(self, input_dim, output_dim):
        super(MyDense, self).__init__()
        self.kernel = self.add_weight(name='w', shape=[input_dim, output_dim], initializer=tf.random_uniform_initializer(0, 1.0))
        self.bias = self.add_weight(name='b', shape=[output_dim], initializer=tf.random_uniform_initializer(0, 1.0))

    def call(self, inputs, training=None):
        out = inputs@self.kernel + self.bias
        return out

#自定义Model,继承自Model
class MyModel(keras.Model):
    #需要实现__init__和call方法
    def __init__(self):
        super(MyModel, self).__init__()
        #自定义5层MyDense自定义Layer
        self.fc1 = MyDense(28*28, 256)
        self.fc2 = MyDense(256, 128)
        self.fc3 = MyDense(128, 64)
        self.fc4 = MyDense(64, 32)
        self.fc5 = MyDense(32, 10)

    def call(self, inputs, trainning=None):
        x = self.fc1(inputs) #会调用MyDense的call方法
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)
        return x

customModel = MyModel()
customModel.build(input_shape=[None, 28*28])
customModel.summary()

运行结果:

相关推荐
菜鸟的人工智能之路9 分钟前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗
菜鸟学Python10 分钟前
Python 数据分析核心库大全!
开发语言·python·数据挖掘·数据分析
小白不太白95012 分钟前
设计模式之 责任链模式
python·设计模式·责任链模式
WeeJot嵌入式15 分钟前
卷积神经网络:深度学习中的图像识别利器
人工智能
喜欢猪猪17 分钟前
Django:从入门到精通
后端·python·django
糖豆豆今天也要努力鸭23 分钟前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
脆皮泡泡24 分钟前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3
机器人虎哥28 分钟前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
码银35 分钟前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
何大春39 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式