模型优化系列1:分类器CenterLoss使用Pytorch实现MNIST、CIFAR10、CIFAR100分类图示

CentLoss实现

前言

参考文章:史上最全MNIST系列(三)------Centerloss在MNIST上的Pytorch实现(可视化)

源码:Gitee或Github都有上传,保留了最优版,对最优版调整了一些参数看效果

Gitee传送门:点击这里跳转Gitee源码库

Github传送门:点击这里跳转Github源码库

--------------------无---------------情---------------分---------------割---------------线--------------------
贴心省流:最优效果见文末的v5版

v1

一开始实现的效果还行,但!是!

我忘记参数了(0.0!!)

于是,开始了漫长的尝试。。。

效果

v2

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 12)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.9)

效果

结论

分类效果不明显

v2_2

v2基础上仅修改了网络结构

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.9)

效果

结论

输出12-->2+10,分类效果明确,但未完全分开

v2_3

v2_2基础上仅修改了学习率

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

结论

动量0.9-->0.8,分类效果不明显

v2_4

v2_2基础上仅修改了学习率

网络输出:2+10

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5, momentum=0.9)

效果

结论

center_loss学习率0.01-->0.5,分类效果不明显

v3

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 5, 1, 1),
    ConvLayer(32, 32, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(32, 64, 5, 1, 1),
    ConvLayer(64, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(64, 128, 5, 1, 1),
    ConvLayer(128, 128, 5, 1, 2),
    nn.MaxPool2d(2, 2)
)

self.fc = nn.Sequential(
    nn.Linear(128, 12)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.002, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 20, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.7)

效果

v3_2

v3基础上修改学习率

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 12)
        )

    # self.output_layer = nn.Sequential(
    #     nn.Linear(2, 10)
    # )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        # feature = self.fc(h_out)
        # outs = self.output_layer(feature)
        outs = self.fc(h_out)
        return outs

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

v4

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.1, momentum=0.8)

效果

v4_2

v4基础上修改了学习率

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

结论

centerloss优化器学习率0.1-->0.01,分类效果明显

更换批次

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=256)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

结论

批次1024-->256,计算速度加快,分类速度减慢

v4_3

v4基础上修改了学习率

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5, momentum=0.8)

效果

结论

centerloss优化器学习率0.1-->0.5,分类效果明显

v5

加深网络,修改centerloss计算(取消平方根),修改学习率

centerloss计算

python 复制代码
# return lamda / 2 * torch.mean(torch.div(torch.sqrt(torch.sum(torch.pow(_x - center_exp, 2), dim=1)), count_exp))
return lamda / 2 * torch.mean(torch.div(torch.sum(torch.pow((_x - center_exp), 2), dim=1), count_exp))

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    # ConvLayer(1, 32, 5, 1, 2),
    ConvLayer(3, 32, 5, 1, 2),
    ConvLayer(32, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(64, 128, 5, 1, 2),
    ConvLayer(128, 256, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(256, 512, 5, 1, 2),
    ConvLayer(512, 512, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(512, 256, 5, 1, 2),
    ConvLayer(256, 128, 5, 1, 2),
    ConvLayer(128, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2)
)

self.fc = nn.Sequential(
    # nn.Linear(64, 2)
    nn.Linear(64 * 2 * 2, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=256)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 20, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5)

效果

MNIST


CIFAR10


CIFAR100

相关推荐
mit6.8249 分钟前
[RestGPT] OpenAPI规范(OAS)
人工智能·python
算家计算1 小时前
一句话生成爆款视频!GPT-5赋能Agent,视频创作进入智能体时代
人工智能·aigc·agent
算家计算1 小时前
使用指南 | Coze Studio 一站式AI智能体开发平台:低代码+多模型+RAG,快速打造你的专业级 AI Agent!
人工智能·agent·coze
hixiong1232 小时前
C# 编写一个XmlToDota的转换工具
开发语言·人工智能·yolo·c#
ManageEngineITSM2 小时前
云原生环境下的ITSM新趋势:从传统运维到智能化服务管理
大数据·运维·人工智能·云原生·itsm·工单系统
aneasystone本尊2 小时前
可视化探索 GraphRAG 的知识图谱
人工智能
嘀咕博客2 小时前
Krea Video:Krea AI推出的AI视频生成工具
人工智能·音视频·ai工具
As33100102 小时前
Manus AI 与多语言手写识别技术全解析
大数据·网络·人工智能
小璐乱撞3 小时前
超越传统 RAG:GraphRAG 全流程解析与实战指南
人工智能·后端
慧星云3 小时前
魔多 AI 上线提现功能 :将你的收益安稳入袋!
人工智能·云计算·aigc