模型优化系列1:分类器CenterLoss使用Pytorch实现MNIST、CIFAR10、CIFAR100分类图示

CentLoss实现

前言

参考文章:史上最全MNIST系列(三)------Centerloss在MNIST上的Pytorch实现(可视化)

源码:Gitee或Github都有上传,保留了最优版,对最优版调整了一些参数看效果

Gitee传送门:点击这里跳转Gitee源码库

Github传送门:点击这里跳转Github源码库

--------------------无---------------情---------------分---------------割---------------线--------------------
贴心省流:最优效果见文末的v5版

v1

一开始实现的效果还行,但!是!

我忘记参数了(0.0!!)

于是,开始了漫长的尝试。。。

效果

v2

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 12)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.9)

效果

结论

分类效果不明显

v2_2

v2基础上仅修改了网络结构

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.9)

效果

结论

输出12-->2+10,分类效果明确,但未完全分开

v2_3

v2_2基础上仅修改了学习率

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

结论

动量0.9-->0.8,分类效果不明显

v2_4

v2_2基础上仅修改了学习率

网络输出:2+10

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5, momentum=0.9)

效果

结论

center_loss学习率0.01-->0.5,分类效果不明显

v3

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 5, 1, 1),
    ConvLayer(32, 32, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(32, 64, 5, 1, 1),
    ConvLayer(64, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(64, 128, 5, 1, 1),
    ConvLayer(128, 128, 5, 1, 2),
    nn.MaxPool2d(2, 2)
)

self.fc = nn.Sequential(
    nn.Linear(128, 12)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.002, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 20, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.7)

效果

v3_2

v3基础上修改学习率

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 12)
        )

    # self.output_layer = nn.Sequential(
    #     nn.Linear(2, 10)
    # )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        # feature = self.fc(h_out)
        # outs = self.output_layer(feature)
        outs = self.fc(h_out)
        return outs

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

v4

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.1, momentum=0.8)

效果

v4_2

v4基础上修改了学习率

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

结论

centerloss优化器学习率0.1-->0.01,分类效果明显

更换批次

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=256)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

结论

批次1024-->256,计算速度加快,分类速度减慢

v4_3

v4基础上修改了学习率

网络结构

python 复制代码
class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5, momentum=0.8)

效果

结论

centerloss优化器学习率0.1-->0.5,分类效果明显

v5

加深网络,修改centerloss计算(取消平方根),修改学习率

centerloss计算

python 复制代码
# return lamda / 2 * torch.mean(torch.div(torch.sqrt(torch.sum(torch.pow(_x - center_exp, 2), dim=1)), count_exp))
return lamda / 2 * torch.mean(torch.div(torch.sum(torch.pow((_x - center_exp), 2), dim=1), count_exp))

网络结构

python 复制代码
self.hidden_layer = nn.Sequential(
    # ConvLayer(1, 32, 5, 1, 2),
    ConvLayer(3, 32, 5, 1, 2),
    ConvLayer(32, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(64, 128, 5, 1, 2),
    ConvLayer(128, 256, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(256, 512, 5, 1, 2),
    ConvLayer(512, 512, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(512, 256, 5, 1, 2),
    ConvLayer(256, 128, 5, 1, 2),
    ConvLayer(128, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2)
)

self.fc = nn.Sequential(
    # nn.Linear(64, 2)
    nn.Linear(64 * 2 * 2, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

python 复制代码
data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=256)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 20, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5)

效果

MNIST


CIFAR10


CIFAR100

相关推荐
yzx9910134 分钟前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
sali-tec9 分钟前
C# 基于halcon的视觉工作流-章34-环状测量
开发语言·图像处理·算法·计算机视觉·c#
只说证事1 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@1 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬1 小时前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者1 小时前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊1211 小时前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者1 小时前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能1 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
七元权1 小时前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计