论文笔记:Large Language Models as Analogical Reasoners

iclr 2024 reviewer打分5558

1 intro

  • 基于CoT prompt的大模型能够更好地解决复杂推理问题
    • 然而传统CoT需要提供相关的例子作为指导,这就增加了人工标注的成本
    • ------>Zero-shot CoT避免了人工标注来引导推理
      • 但是对于一些复杂的任务难以完成推理,例如code generation
  • ------>论文提出一种"归纳学习"的提示方法
    • 首先设计prompt让大模型生成出与当前问题比较相关的问题和答案,以辅助问答提出的问题

2 preliminary

  • 给定一个问题x

    • 首先通过prompt将问题映射到文本输入ϕ ( x )

      |---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
      | zero-shot | ϕ ( x ) 就是x |
      | zero-shot CoT | ϕ ( x ) 是[x] think step by step |
      | few-shot CoT | ϕ ( x ) 是[x]和一些带label的例子 ,即 [x1][r1][a1].....[xK][rK][aK][x] |

    • 任务目标是调用LLM解决这个问题【生成目标答案y】

      • 生成的目标答案可以包含reasoning path r【推理过程】和答案a

3 方法

3.1 Self-Generated Exemplars

  • 让大模型从在训练阶段掌握的problem-solving knowledge中生成出相关的问题和解决方法

3.1.1 prompt举例

3.1.2 大模型给的答案

大模型先生成出3个相关的且互不相同的problem,并给出相应的解决方案,然后再对目标问题进行解决。

3.1.3 self-generated instruction的三个核心部分

  • 明确地让大模型生成相关且不同的样例。
    • 因为大模型会偏向于重复地生成一些经典的问题,导致误导
  • single-pass VS independent exemplar generation
    • 所谓single-pass,就是直接prompt,让模型生成3个样例
    • independent exemplar generation:让模型生成若干样例,然后采样3个样例,之后再重新设计prompt让大模型进行生成
    • ------>通过实验,发现single-pass效果最好
  • 生成的样例数量:3~5最佳

3.2 Self-generated Knowledge + Exemplars

  • 对于像代码生成等复杂的任务,3.1这样的案例生成方法不一定能过让模型很好地解决此类问题
    • ------>论文提出一种high-level generation方法。通过设计如下指令来实现:
  • 【让模型先思考选择什么algorithm,以及algorithm对应的tutorial】

有点类似于:论文笔记:Take a Step Back:Evoking Reasoning via Abstraction in Large Language Models-CSDN博客的后退一步?

3.2.1 prompt 案例

3.2.2 大模型给的答案

4 实验

4.1 实验任务

  • 数学问题:GSM8K、MATH等;
  • 代码生成:动态规划、图算法等复杂的编程题

4.2 效果比较

4.2.1 数学问题

4.2.2 代码生成

4.3 few-shot example 数量的异同

相关推荐
Warren2Lynch2 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale2 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant2 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138342 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo2 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms12 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑2 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei2 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing3 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
yusur3 小时前
边缘智算新引擎 DPU 驱动的算力革新
人工智能·科技·rdma·dpu