吴恩达2022机器学习专项课程(一) 5.2 向量化(1)& 5.3 向量化(2)

问题预览/关键词

  1. 什么是向量化?
  2. 向量化的好处是?
  3. 如何向量化多元线性回归函数的参数?
  4. 如何在Python中向量化参数?
  5. 计算机底层是如何计算向量化的?
  6. 向量化示例

笔记

1.向量化

一种在数学和计算中广泛使用的概念,它指的是以向量的形式处理数据,而不是单个元素。

2.好处

减少代码量,简化格式,显著提高数据处理的效率。

3.向量化参数

  • 原有格式
  • 三个参数w的向量化,用w加上面一个箭头来表示。
  • 三个输入特征x的向量化。
  • 参数b是标量(一个元素)
  • 最终格式

4.Python代码向量化参数

  • 使用Numpy数组存储w和b。
  • 未向量化代码,取数据元素一个一个相乘(灰色部分)。
  • 未向量化代码,for循环,相比一个一个计算好一些,但是效率依旧不高。
  • 向量化,使用NumPy库的dot函数,一行代码就实现。

5.底层计算向量化

向量化会让计算机调用专门的硬件,并行处理显著提高效率,同时计算多个操作。

6.向量化示例

  • w和d分别有16个元素,需要计算每个w元素减去对应的d元素和0.1乘积,然后更新对应的w。
  • 未向量化,for循环。
  • 向量化,w和d都是Numpy数组,计算过程会逐个元素计算,一行代码搞定。

总结

向量化既可以减少代码量,增加代码的可读性和维护性,同时底层会调用GPU计算,提高代码运行速度和效率。在Python中,我们会经常使用Numpy库的方法,例如np.array,np.dot,避免显式的循环,直接对数组进行数学和逻辑操作,来达到向量化的效果。

相关推荐
前端摸鱼匠几秒前
YOLOv8 深入探索 Ultralytics CLI:一行命令搞定目标检测的魔法
人工智能·yolo·目标检测·计算机视觉·目标跟踪
码农三叔20 分钟前
(11-4-01)完整人形机器人的设计与实现案例:机器人的站立与行走
人工智能·嵌入式硬件·机器人·人机交互·人形机器人
大模型玩家七七20 分钟前
效果评估:如何判断一个祝福 AI 是否“走心”
android·java·开发语言·网络·人工智能·batch
OpenLoong 开源社区22 分钟前
开源发布 | 从青龙Nano到青龙Mini:共建开源生态,首次亮相产教融合场景
人工智能·开源
水木姚姚23 分钟前
AI编程画马(含AI辅助创作)
人工智能·ai编程
老纪的技术唠嗑局29 分钟前
uv × pyseekdb:把 RAG 环境与检索落地成本降到最低
人工智能
m0_6038887130 分钟前
Chatting with Images for Introspective Visual Thinking
人工智能·计算机视觉·ai·论文速览
MicRabbit31 分钟前
openClaw安装飞书插件|核心踩坑:spawn EINVAL 错误终极解决指南
人工智能
iqiu33 分钟前
自研第一个SKILL-openclaw入门
人工智能
码农三叔34 分钟前
(11-4-02)完整人形机器人的设计与实现案例:机器人跳跃
人工智能·算法·机器人·人机交互·人形机器人