吴恩达2022机器学习专项课程(一) 5.2 向量化(1)& 5.3 向量化(2)

问题预览/关键词

  1. 什么是向量化?
  2. 向量化的好处是?
  3. 如何向量化多元线性回归函数的参数?
  4. 如何在Python中向量化参数?
  5. 计算机底层是如何计算向量化的?
  6. 向量化示例

笔记

1.向量化

一种在数学和计算中广泛使用的概念,它指的是以向量的形式处理数据,而不是单个元素。

2.好处

减少代码量,简化格式,显著提高数据处理的效率。

3.向量化参数

  • 原有格式
  • 三个参数w的向量化,用w加上面一个箭头来表示。
  • 三个输入特征x的向量化。
  • 参数b是标量(一个元素)
  • 最终格式

4.Python代码向量化参数

  • 使用Numpy数组存储w和b。
  • 未向量化代码,取数据元素一个一个相乘(灰色部分)。
  • 未向量化代码,for循环,相比一个一个计算好一些,但是效率依旧不高。
  • 向量化,使用NumPy库的dot函数,一行代码就实现。

5.底层计算向量化

向量化会让计算机调用专门的硬件,并行处理显著提高效率,同时计算多个操作。

6.向量化示例

  • w和d分别有16个元素,需要计算每个w元素减去对应的d元素和0.1乘积,然后更新对应的w。
  • 未向量化,for循环。
  • 向量化,w和d都是Numpy数组,计算过程会逐个元素计算,一行代码搞定。

总结

向量化既可以减少代码量,增加代码的可读性和维护性,同时底层会调用GPU计算,提高代码运行速度和效率。在Python中,我们会经常使用Numpy库的方法,例如np.array,np.dot,避免显式的循环,直接对数组进行数学和逻辑操作,来达到向量化的效果。

相关推荐
InfiSight智睿视界3 分钟前
当老字号遇上AI:阳坊涮肉的数字化运营转型之路
大数据·人工智能·连锁店智能巡检
张3蜂5 分钟前
OpenClaw 深度解析:从个人 AI 助理到开源智能体平台
人工智能·开源
程序员欣宸6 分钟前
LangChain4j实战之十六:RAG (检索增强生成),Naive RAG
java·人工智能·ai·langchain4j
Dingdangcat866 分钟前
轮胎缺陷检测与分类系统基于solov2_r101_fpn_ms-3x_coco模型实现_fulltyre专项识别_1
人工智能·分类·数据挖掘
Ivanqhz7 分钟前
现代异构高性能计算(HPC)集群节点架构
开发语言·人工智能·后端·算法·架构·云计算·边缘计算
weixin_509138347 分钟前
探索智能体认知动力学:几何视角下的AI革命(系列博客第二期)
人工智能·机器学习·语义空间
Loo国昌9 分钟前
【大模型应用开发】第三阶段:深度解析检索增强生成(RAG)原理
人工智能·后端·深度学习·自然语言处理·transformer
ONLYOFFICE9 分钟前
ONLYOFFICE AI 插件新功能:轻松创建专属 AI 助手
人工智能·onlyoffice
audyxiao0019 分钟前
AI一周重要会议和活动概览(2.2-2.8)
人工智能·大模型·iclr·ccf·一周会议与活动
柠萌f10 分钟前
2026 素材趋势报告:为什么“素材工程能力”,正在决定品牌的投放天花板?
人工智能