吴恩达2022机器学习专项课程(一) 5.2 向量化(1)& 5.3 向量化(2)

问题预览/关键词

  1. 什么是向量化?
  2. 向量化的好处是?
  3. 如何向量化多元线性回归函数的参数?
  4. 如何在Python中向量化参数?
  5. 计算机底层是如何计算向量化的?
  6. 向量化示例

笔记

1.向量化

一种在数学和计算中广泛使用的概念,它指的是以向量的形式处理数据,而不是单个元素。

2.好处

减少代码量,简化格式,显著提高数据处理的效率。

3.向量化参数

  • 原有格式
  • 三个参数w的向量化,用w加上面一个箭头来表示。
  • 三个输入特征x的向量化。
  • 参数b是标量(一个元素)
  • 最终格式

4.Python代码向量化参数

  • 使用Numpy数组存储w和b。
  • 未向量化代码,取数据元素一个一个相乘(灰色部分)。
  • 未向量化代码,for循环,相比一个一个计算好一些,但是效率依旧不高。
  • 向量化,使用NumPy库的dot函数,一行代码就实现。

5.底层计算向量化

向量化会让计算机调用专门的硬件,并行处理显著提高效率,同时计算多个操作。

6.向量化示例

  • w和d分别有16个元素,需要计算每个w元素减去对应的d元素和0.1乘积,然后更新对应的w。
  • 未向量化,for循环。
  • 向量化,w和d都是Numpy数组,计算过程会逐个元素计算,一行代码搞定。

总结

向量化既可以减少代码量,增加代码的可读性和维护性,同时底层会调用GPU计算,提高代码运行速度和效率。在Python中,我们会经常使用Numpy库的方法,例如np.array,np.dot,避免显式的循环,直接对数组进行数学和逻辑操作,来达到向量化的效果。

相关推荐
WLJT123123123几秒前
“人工智能+”引领数字产业迈入价值兑现新阶段
人工智能
JH灰色2 分钟前
【大模型】-微调-BERT
人工智能·深度学习·bert
free-elcmacom9 分钟前
机器学习高阶教程<9>从实验室到生产线:机器学习模型推理与部署优化实战指南
人工智能·python·机器学习
Felaim16 分钟前
【自动驾驶】RAD 要点总结(地平线)
人工智能·机器学习·自动驾驶
Pyeako19 分钟前
机器学习--逻辑回归相关案例
人工智能·python·机器学习·逻辑回归·下采样·交叉验证·过采样
财经三剑客21 分钟前
中国首块L3级自动驾驶专用正式号牌诞生,落户长安深蓝
人工智能·机器学习·自动驾驶
一水鉴天22 分钟前
整体设计 定稿 之8 讨论过程的两套整理工具的讨论 之1(豆包助手)
人工智能·架构
微尘hjx24 分钟前
【目标检测软件 02】AirsPy 目标检测系统操作指南
人工智能·测试工具·yolo·目标检测·计算机视觉·目标跟踪·qt5
kimi-22226 分钟前
LangChain 中 Prompt 模板
人工智能
米有哥30 分钟前
[Embodied AI] Mac上安装ROS2
人工智能·macos·ros2