吴恩达2022机器学习专项课程(一) 5.2 向量化(1)& 5.3 向量化(2)

问题预览/关键词

  1. 什么是向量化?
  2. 向量化的好处是?
  3. 如何向量化多元线性回归函数的参数?
  4. 如何在Python中向量化参数?
  5. 计算机底层是如何计算向量化的?
  6. 向量化示例

笔记

1.向量化

一种在数学和计算中广泛使用的概念,它指的是以向量的形式处理数据,而不是单个元素。

2.好处

减少代码量,简化格式,显著提高数据处理的效率。

3.向量化参数

  • 原有格式
  • 三个参数w的向量化,用w加上面一个箭头来表示。
  • 三个输入特征x的向量化。
  • 参数b是标量(一个元素)
  • 最终格式

4.Python代码向量化参数

  • 使用Numpy数组存储w和b。
  • 未向量化代码,取数据元素一个一个相乘(灰色部分)。
  • 未向量化代码,for循环,相比一个一个计算好一些,但是效率依旧不高。
  • 向量化,使用NumPy库的dot函数,一行代码就实现。

5.底层计算向量化

向量化会让计算机调用专门的硬件,并行处理显著提高效率,同时计算多个操作。

6.向量化示例

  • w和d分别有16个元素,需要计算每个w元素减去对应的d元素和0.1乘积,然后更新对应的w。
  • 未向量化,for循环。
  • 向量化,w和d都是Numpy数组,计算过程会逐个元素计算,一行代码搞定。

总结

向量化既可以减少代码量,增加代码的可读性和维护性,同时底层会调用GPU计算,提高代码运行速度和效率。在Python中,我们会经常使用Numpy库的方法,例如np.array,np.dot,避免显式的循环,直接对数组进行数学和逻辑操作,来达到向量化的效果。

相关推荐
喜欢吃豆几秒前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站3 分钟前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats1 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星1 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器1 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游
EnoYao1 小时前
Markdown 编辑器技术调研
前端·javascript·人工智能
TMT星球1 小时前
曹操出行上市后首次战略并购,进军万亿to B商旅市场
人工智能·汽车
Coder_Boy_1 小时前
Spring AI 源码大白话解析
java·人工智能·spring
Fuly10242 小时前
大模型剪枝(Pruning)技术简介
算法·机器学习·剪枝
启途AI2 小时前
【深度解析】ChatPPT联动Nano Banana Pro:不止生成风格自由,AI创作编辑全链路解锁
人工智能·powerpoint·ppt