吴恩达2022机器学习专项课程(一) 5.2 向量化(1)& 5.3 向量化(2)

问题预览/关键词

  1. 什么是向量化?
  2. 向量化的好处是?
  3. 如何向量化多元线性回归函数的参数?
  4. 如何在Python中向量化参数?
  5. 计算机底层是如何计算向量化的?
  6. 向量化示例

笔记

1.向量化

一种在数学和计算中广泛使用的概念,它指的是以向量的形式处理数据,而不是单个元素。

2.好处

减少代码量,简化格式,显著提高数据处理的效率。

3.向量化参数

  • 原有格式
  • 三个参数w的向量化,用w加上面一个箭头来表示。
  • 三个输入特征x的向量化。
  • 参数b是标量(一个元素)
  • 最终格式

4.Python代码向量化参数

  • 使用Numpy数组存储w和b。
  • 未向量化代码,取数据元素一个一个相乘(灰色部分)。
  • 未向量化代码,for循环,相比一个一个计算好一些,但是效率依旧不高。
  • 向量化,使用NumPy库的dot函数,一行代码就实现。

5.底层计算向量化

向量化会让计算机调用专门的硬件,并行处理显著提高效率,同时计算多个操作。

6.向量化示例

  • w和d分别有16个元素,需要计算每个w元素减去对应的d元素和0.1乘积,然后更新对应的w。
  • 未向量化,for循环。
  • 向量化,w和d都是Numpy数组,计算过程会逐个元素计算,一行代码搞定。

总结

向量化既可以减少代码量,增加代码的可读性和维护性,同时底层会调用GPU计算,提高代码运行速度和效率。在Python中,我们会经常使用Numpy库的方法,例如np.array,np.dot,避免显式的循环,直接对数组进行数学和逻辑操作,来达到向量化的效果。

相关推荐
久曲健的测试窝1 分钟前
深度解构Testin XAgent:AI测试如何“副驾驶”进化为“全自动驾驶”
人工智能·机器学习·自动驾驶
nvvas7 分钟前
Java AI开发入门指南
java·人工智能
阿正的梦工坊12 分钟前
RLVE:通过自适应可验证环境扩展语言模型的强化学习
人工智能·深度学习·语言模型
是毛毛吧13 分钟前
豆包风波后的破局者:智谱 AutoGLM 让“AI 手机”走向公共基建
人工智能·智能手机·开源·github·开源软件
Hi2024021717 分钟前
CARLA自动驾驶仿真环境搭建与DEMO详解
人工智能·机器学习·自动驾驶
黑客思维者18 分钟前
XGW-9000系列高端新能源电站边缘网关软件架构设计
人工智能·物联网·iot·新能源·软件架构·边缘网关·计算机硬件
Biomamba生信基地23 分钟前
人工智能药学大会现场
人工智能·药学
微尘hjx23 分钟前
【目标检测软件 01】YOLO识别软件功能与操作指南
人工智能·测试工具·yolo·目标检测·计算机视觉·ai·pyqt
ekprada28 分钟前
Day 38 - Dataset 和 DataLoader
人工智能·python
测试人社区-小明30 分钟前
洞察金融科技测试面试:核心能力与趋势解析
人工智能·科技·面试·金融·机器人·自动化·github