10-热点文章-定时计算

xxl-Job分布式任务调度

1 今日内容

1.1 需求分析

目前实现的思路:从数据库直接按照发布时间倒序查询

  • 问题1:

    如何访问量较大,直接查询数据库,压力较大

  • 问题2:

    新发布的文章会展示在前面,并不是热点文章

1.2 实现思路

把热点数据存入redis进行展示

判断文章是否是热点,有几项标准: 点赞数量,评论数量,阅读数量,收藏数量

计算文章热度,有两种方案:

  • 定时计算文章热度

  • 实时计算文章热度

1.3 定时计算

  • 根据文章的行为(点赞、评论、阅读、收藏)计算文章的分值,利用定时任务每天完成一次计算

  • 把分值较大的文章数据存入到redis中

  • App端用户查询文章列表的时候,优先从redis中查询热度较高的文章数据

1.4 定时任务框架-xxljob

spring传统的定时任务@Scheduled,但是这样存在这一些问题 :

  • 做集群任务的重复执行问题

  • cron表达式定义在代码之中,修改不方便

  • 定时任务失败了,无法重试也没有统计

  • 如果任务量过大,不能有效的分片执行

解决这些问题的方案为:

xxl-job 分布式任务调度框架

1.5 学习目录

  • xxl-job概述

  • xxl-job入门案例

  • xxl-job高级部分

  • 热点文章定时计算

  • 查询文章接口改造

2.分布式任务调度

2.1 什么是分布式任务调度

当前软件的架构已经开始向分布式架构转变,将单体结构拆分为若干服务,服务之间通过网络交互来完成业务处理。在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度

将任务调度程序分布式构建,这样就可以具有分布式系统的特点,并且提高任务的调度处理能力:

1、并行任务调度

并行任务调度实现靠多线程,如果有大量任务需要调度,此时光靠多线程就会有瓶颈了,因为一台计算机CPU的处理能力是有限的。

如果将任务调度程序分布式部署,每个结点还可以部署为集群,这样就可以让多台计算机共同去完成任务调度,我们可以将任务分割为若干个分片,由不同的实例并行执行,来提高任务调度的处理效率。

2、高可用

若某一个实例宕机,不影响其他实例来执行任务。

3、弹性扩容

当集群中增加实例就可以提高并执行任务的处理效率。

4、任务管理与监测

对系统中存在的所有定时任务进行统一的管理及监测。让开发人员及运维人员能够时刻了解任务执行情况,从而做出快速的应急处理响应。

分布式任务调度面临的问题:

当任务调度以集群方式部署,同一个任务调度可能会执行多次,例如:电商系统定期发放优惠券,就可能重复发放优惠券,对公司造成损失,信用卡还款提醒就会重复执行多次,给用户造成烦恼,所以我们需要控制相同的任务在多个运行实例上只执行一次。常见解决方案:

  • 分布式锁,多个实例在任务执行前首先需要获取锁,如果获取失败那么就证明有其他服务已经在运行,如果获取成功那么证明没有服务在运行定时任务,那么就可以执行。
  • ZooKeeper选举,利用ZooKeeper对Leader实例执行定时任务,执行定时任务的时候判断自己是否是Leader,如果不是则不执行,如果是则执行业务逻辑,这样也能达到目的。

2.2 xxl-Job简介

针对分布式任务调度的需求,市场上出现了很多的产品:

1) TBSchedule:淘宝推出的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多互联网企业的流程调度系统中。但是已经多年未更新,文档缺失严重,缺少维护。

2) XXL-Job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

3)Elastic-job:当当网借鉴TBSchedule并基于quartz 二次开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,具有任务高可用以及分片功能。

4)Saturn: 唯品会开源的一个分布式任务调度平台,基于Elastic-job,可以全域统一配置,统一监

控,具有任务高可用以及分片功能。

XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

源码地址:https://gitee.com/xuxueli0323/xxl-job

文档地址:https://www.xuxueli.com/xxl-job/

特性

  • 简单灵活
    提供Web页面对任务进行管理,管理系统支持用户管理、权限控制;
    支持容器部署;
    支持通过通用HTTP提供跨平台任务调度;
  • 丰富的任务管理功能
    支持页面对任务CRUD操作;
    支持在页面编写脚本任务、命令行任务、Java代码任务并执行;
    支持任务级联编排,父任务执行结束后触发子任务执行;
    支持设置指定任务执行节点路由策略,包括轮询、随机、广播、故障转移、忙碌转移等;
    支持Cron方式、任务依赖、调度中心API接口方式触发任务执行
  • 高性能
    任务调度流程全异步化设计实现,如异步调度、异步运行、异步回调等,有效对密集调度进行流量削峰;
  • 高可用
    任务调度中心、任务执行节点均 集群部署,支持动态扩展、故障转移
    支持任务配置路由故障转移策略,执行器节点不可用是自动转移到其他节点执行
    支持任务超时控制、失败重试配置
    支持任务处理阻塞策略:调度当任务执行节点忙碌时来不及执行任务的处理策略,包括:串行、抛弃、覆盖策略
  • 易于监控运维
    支持设置任务失败邮件告警,预留接口支持短信、钉钉告警;
    支持实时查看任务执行运行数据统计图表、任务进度监控数据、任务完整执行日志;

2.3 XXL-Job-环境搭建

2.3.1 调度中心环境要求
  • Maven3+
  • Jdk1.8+
  • Mysql5.7+
2.3.2 源码仓库地址
源码仓库地址 Release Download
https://github.com/xuxueli/xxl-job Download
http://gitee.com/xuxueli0323/xxl-job Download

也可以使用资料文件夹中的源码

2.3.3 初始化"调度数据库"

请下载项目源码并解压,获取 "调度数据库初始化SQL脚本" 并执行即可。

位置:/xxl-job/doc/db/tables_xxl_job.sql 共8张表

java 复制代码
- xxl_job_lock:任务调度锁表;
- xxl_job_group:执行器信息表,维护任务执行器信息;
- xxl_job_info:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
- xxl_job_log:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
- xxl_job_logglue:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
- xxl_job_registry:执行器注册表,维护在线的执行器和调度中心机器地址信息;
- xxl_job_user:系统用户表;

调度中心支持集群部署,集群情况下各节点务必连接同一个mysql实例;

如果mysql做主从,调度中心集群节点务必强制走主库;

2.3.4 编译源码

解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:

2.3.5 配置部署"调度中心"

调度中心项目:xxl-job-admin

作用:统一管理任务调度平台上调度任务,负责触发调度执行,并且提供任务管理平台。

步骤一:调度中心配置

调度中心配置文件地址:/xxl-job/xxl-job-admin/src/main/resources/application.properties

数据库的连接信息修改为自己的数据库

properties 复制代码
### web
server.port=8888
server.servlet.context-path=/xxl-job-admin

### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false

### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/

### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########

### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model

### xxl-job, datasource
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl_job?Unicode=true&serverTimezone=Asia/Shanghai&characterEncoding=UTF-8
spring.datasource.username=root
spring.datasource.password=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1

### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

### xxl-job, access token
xxl.job.accessToken=

### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN

## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100

### xxl-job, log retention days
xxl.job.logretentiondays=30

启动调度中心,默认登录账号 "admin/123456", 登录后运行界面如下图所示。

2.4 配置部署调度中心-docker安装

1.创建mysql容器,初始化xxl-job的SQL脚本

shell 复制代码
docker run -p 3306:3306 --name mysql57 \
-v /opt/mysql/conf:/etc/mysql \
-v /opt/mysql/logs:/var/log/mysql \
-v /opt/mysql/data:/var/lib/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7

2.拉取镜像

shell 复制代码
docker pull xuxueli/xxl-job-admin:2.3.0

3.创建容器

shell 复制代码
docker run -e PARAMS="--spring.datasource.url=jdbc:mysql://192.168.200.130:3306/xxl_job?Unicode=true&characterEncoding=UTF-8 \
--spring.datasource.username=root \
--spring.datasource.password=root" \
-p 8888:8080 -v /tmp:/data/applogs \
--name xxl-job-admin --restart=always  -d xuxueli/xxl-job-admin:2.3.0

2.5 xxl-job入门案例编写

2.5.1 登录调度中心,点击下图所示"新建任务"按钮,新建示例任务
2.5.2 创建xxljob-demo项目,导入依赖
xml 复制代码
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <!--xxl-job-->
    <dependency>
        <groupId>com.xuxueli</groupId>
        <artifactId>xxl-job-core</artifactId>
        <version>2.3.0</version>
    </dependency>
</dependencies>
2.5.3 application.yml配置
yaml 复制代码
server:
  port: 8881


xxl:
  job:
    admin:
      addresses: http://192.168.200.130:8888/xxl-job-admin
    executor:
      appname: xxl-job-executor-sample
      port: 9999
2.5.4 新建配置类
java 复制代码
package com.heima.xxljob.config;

import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * xxl-job config
 *
 * @author xuxueli 2017-04-28
 */
@Configuration
public class XxlJobConfig {
    private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);

    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;

    @Value("${xxl.job.executor.appname}")
    private String appname;

    @Value("${xxl.job.executor.port}")
    private int port;


    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        logger.info(">>>>>>>>>>> xxl-job config init.");
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setPort(port);
        return xxlJobSpringExecutor;
    }


}
2.5.4 任务代码,重要注解:@XxlJob("JobHandler")
java 复制代码
package com.heima.xxljob.job;

import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;

@Component
public class HelloJob {


    @XxlJob("demoJobHandler")
    public void helloJob(){
        System.out.println("简单任务执行了。。。。");

    }
}
2.5.5 测试-单节点
  • 启动微服务

  • 在xxl-job的调度中心中启动任务

2.6 任务详解-执行器

  • 执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能;

  • 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器

以下是执行器的属性说明:

属性名称 说明
AppName 是每个执行器集群的唯一标示AppName, 执行器会周期性以AppName为对象进行自动注册。可通过该配置自动发现注册成功的执行器, 供任务调度时使用;
名称 执行器的名称, 因为AppName限制字母数字等组成,可读性不强, 名称为了提高执行器的可读性;
排序 执行器的排序, 系统中需要执行器的地方,如任务新增, 将会按照该排序读取可用的执行器列表;
注册方式 调度中心获取执行器地址的方式;
机器地址 注册方式为"手动录入"时有效,支持人工维护执行器的地址信息;

自动注册和手动注册的区别和配置

2.7 任务详解-基础配置

基础配置

  • 执行器:每个任务必须绑定一个执行器, 方便给任务进行分组

  • 任务描述:任务的描述信息,便于任务管理;

  • 负责人:任务的负责人;

  • 报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔

调度配置

  • 调度类型:
    • 无:该类型不会主动触发调度;
    • CRON:该类型将会通过CRON,触发任务调度;
    • 固定速度:该类型将会以固定速度,触发任务调度;按照固定的间隔时间,周期性触发;

任务配置

  • 运行模式:

​ BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 "JobHandler" 属性匹配执行器中任务;

  • JobHandler:运行模式为 "BEAN模式" 时生效,对应执行器中新开发的JobHandler类"@JobHandler"注解自定义的value值;

  • 执行参数:任务执行所需的参数;

阻塞处理策略

阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;

  • 单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO(First Input First Output)队列并以串行方式运行;

  • 丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;

  • 覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;

路由策略

当执行器集群部署时,提供丰富的路由策略,包括;

  • FIRST(第一个):固定选择第一个机器;

  • LAST(最后一个):固定选择最后一个机器;

  • ROUND(轮询)

  • RANDOM(随机):随机选择在线的机器;

  • CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。

  • LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;

  • LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;

  • FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;

  • BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;

  • SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

2.8 路由策略(轮询)-案例

1.修改任务为轮询

2.启动多个微服务

修改yml配置文件

yaml 复制代码
server:
  port: ${port:8881}


xxl:
  job:
    admin:
      addresses: http://192.168.200.130:8888/xxl-job-admin
    executor:
      appname: xxl-job-executor-sample
      port: ${executor.port:9999}

3.启动多个微服务

每个微服务轮询的去执行任务

2.9 路由策略(分片广播)

2.9.1 分片逻辑

执行器集群部署时,任务路由策略选择"分片广播"情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务

执行器集群部署时,任务路由策略选择"分片广播"情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务

2.9.2 路由策略(分片广播)-案例

需求:让两个节点同时执行10000个任务,每个节点分别执行5000个任务

①:创建分片执行器

②:创建任务,路由策略为分片广播

③:分片广播代码

分片参数

​ index:当前分片序号(从0开始),执行器集群列表中当前执行器的序号;

​ total:总分片数,执行器集群的总机器数量;

修改yml配置

yaml 复制代码
server:
  port: ${port:8881}


xxl:
  job:
    admin:
      addresses: http://192.168.200.130:8888/xxl-job-admin
    executor:
      appname: xxl-job-sharding-executor
      port: ${executor.port:9999}

代码

java 复制代码
package com.heima.xxljob.job;

import com.xxl.job.core.context.XxlJobHelper;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

import java.util.ArrayList;
import java.util.List;

@Component
public class HelloJob {

    @Value("${server.port}")
    private String port;


    @XxlJob("demoJobHandler")
    public void helloJob(){
        System.out.println("简单任务执行了。。。。"+port);

    }

    @XxlJob("shardingJobHandler")
    public void shardingJobHandler(){
        //分片的参数
        int shardIndex = XxlJobHelper.getShardIndex();
        int shardTotal = XxlJobHelper.getShardTotal();

        //业务逻辑
        List<Integer> list = getList();
        for (Integer integer : list) {
            if(integer % shardTotal == shardIndex){
                System.out.println("当前第"+shardIndex+"分片执行了,任务项为:"+integer);
            }
        }
    }

    public List<Integer> getList(){
        List<Integer> list = new ArrayList<>();
        for (int i = 0; i < 10000; i++) {
            list.add(i);
        }
        return list;
    }
}

④:测试

启动多个微服务测试,一次执行可以执行多个任务

3.热点文章-定时计算

3.1 需求分析

需求:为每个频道缓存热度较高的30条文章优先展示

判断文章热度较高的标准是什么?

文章:阅读,点赞,评论,收藏

3.2 实现思路

3.3 实现步骤

分值计算不涉及到前端工程,也无需提供api接口,是一个纯后台的功能的开发。

3.3.1 频道列表远程接口准备

计算完成新热数据后,需要给每个频道缓存一份数据,所以需要查询所有频道信息

① 在heima-leadnews-feign-api定义远程接口

java 复制代码
package com.heima.apis.wemedia;

import com.heima.model.common.dtos.ResponseResult;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;

@FeignClient("leadnews-wemedia")
public interface IWemediaClient {

    @GetMapping("/api/v1/channel/list")
    public ResponseResult getChannels();
}

② heima-leadnews-wemedia端提供接口

java 复制代码
package com.heima.wemedia.feign;

import com.heima.apis.wemedia.IWemediaClient;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.wemedia.service.WmChannelService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class WemediaClient implements IWemediaClient {

    @Autowired
    private WmChannelService wmChannelService;

    @GetMapping("/api/v1/channel/list")
    @Override
    public ResponseResult getChannels() {
        return wmChannelService.findAll();
    }
}

在ApArticleMapper.xml新增方法

xml 复制代码
<select id="findArticleListByLast5days" resultMap="resultMap">
    SELECT
    aa.*
    FROM
    `ap_article` aa
    LEFT JOIN ap_article_config aac ON aa.id = aac.article_id
    <where>
        and aac.is_delete != 1
        and aac.is_down != 1
        <if test="dayParam != null">
            and aa.publish_time <![CDATA[>=]]> #{dayParam}
        </if>
    </where>
</select>

修改ApArticleMapper类

java 复制代码
package com.heima.article.mapper;

import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.heima.model.article.dtos.ArticleHomeDto;
import com.heima.model.article.pojos.ApArticle;
import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;

import java.util.Date;
import java.util.List;

@Mapper
public interface ApArticleMapper extends BaseMapper<ApArticle> {

    /**
     * 加载文章列表
     * @param dto
     * @param type  1  加载更多   2记载最新
     * @return
     */
    public List<ApArticle> loadArticleList(ArticleHomeDto dto,Short type);

    public List<ApArticle> findArticleListByLast5days(@Param("dayParam") Date dayParam);
}
3.3.2 热文章业务层

定义业务层接口

java 复制代码
package com.heima.article.service;

public interface HotArticleService {

    /**
     * 计算热点文章
     */
    public void computeHotArticle();
}

修改ArticleConstans

java 复制代码
package com.heima.common.constants;

public class ArticleConstants {
    public static final Short LOADTYPE_LOAD_MORE = 1;
    public static final Short LOADTYPE_LOAD_NEW = 2;
    public static final String DEFAULT_TAG = "__all__";

    public static final String ARTICLE_ES_SYNC_TOPIC = "article.es.sync.topic";

    public static final Integer HOT_ARTICLE_LIKE_WEIGHT = 3;
    public static final Integer HOT_ARTICLE_COMMENT_WEIGHT = 5;
    public static final Integer HOT_ARTICLE_COLLECTION_WEIGHT = 8;

    public static final String HOT_ARTICLE_FIRST_PAGE = "hot_article_first_page_";
}

创建一个vo接收计算分值后的对象

java 复制代码
package com.heima.model.article.vos;

import com.heima.model.article.pojos.ApArticle;
import lombok.Data;

@Data
public class HotArticleVo extends ApArticle {
    /**
     * 文章分值
     */
    private Integer score;
}

业务层实现类

java 复制代码
package com.heima.article.service.impl;

import com.alibaba.fastjson.JSON;
import com.heima.apis.wemedia.IWemediaClient;
import com.heima.article.mapper.ApArticleMapper;
import com.heima.article.service.HotArticleService;
import com.heima.common.constants.ArticleConstants;
import com.heima.common.redis.CacheService;
import com.heima.model.article.pojos.ApArticle;
import com.heima.model.article.vos.HotArticleVo;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.wemedia.pojos.WmChannel;
import lombok.extern.slf4j.Slf4j;
import org.joda.time.DateTime;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.Date;
import java.util.List;
import java.util.stream.Collectors;

@Service
@Slf4j
@Transactional
public class HotArticleServiceImpl implements HotArticleService {

    @Autowired
    private ApArticleMapper apArticleMapper;

    /**
     * 计算热点文章
     */
    @Override
    public void computeHotArticle() {
        //1.查询前5天的文章数据
        Date dateParam = DateTime.now().minusDays(50).toDate();
        List<ApArticle> apArticleList = apArticleMapper.findArticleListByLast5days(dateParam);

        //2.计算文章的分值
        List<HotArticleVo> hotArticleVoList = computeHotArticle(apArticleList);

        //3.为每个频道缓存30条分值较高的文章
        cacheTagToRedis(hotArticleVoList);

    }

    @Autowired
    private IWemediaClient wemediaClient;

    @Autowired
    private CacheService cacheService;

    /**
     * 为每个频道缓存30条分值较高的文章
     * @param hotArticleVoList
     */
    private void cacheTagToRedis(List<HotArticleVo> hotArticleVoList) {
        //每个频道缓存30条分值较高的文章
        ResponseResult responseResult = wemediaClient.getChannels();
        if(responseResult.getCode().equals(200)){
            String channelJson = JSON.toJSONString(responseResult.getData());
            List<WmChannel> wmChannels = JSON.parseArray(channelJson, WmChannel.class);
            //检索出每个频道的文章
            if(wmChannels != null && wmChannels.size() > 0){
                for (WmChannel wmChannel : wmChannels) {
                    List<HotArticleVo> hotArticleVos = hotArticleVoList.stream().filter(x -> x.getChannelId().equals(wmChannel.getId())).collect(Collectors.toList());
                    //给文章进行排序,取30条分值较高的文章存入redis  key:频道id   value:30条分值较高的文章
                    sortAndCache(hotArticleVos, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + wmChannel.getId());
                }
            }
        }


        //设置推荐数据
        //给文章进行排序,取30条分值较高的文章存入redis  key:频道id   value:30条分值较高的文章
        sortAndCache(hotArticleVoList, ArticleConstants.HOT_ARTICLE_FIRST_PAGE+ArticleConstants.DEFAULT_TAG);


    }

    /**
     * 排序并且缓存数据
     * @param hotArticleVos
     * @param key
     */
    private void sortAndCache(List<HotArticleVo> hotArticleVos, String key) {
        hotArticleVos = hotArticleVos.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());
        if (hotArticleVos.size() > 30) {
            hotArticleVos = hotArticleVos.subList(0, 30);
        }
        cacheService.set(key, JSON.toJSONString(hotArticleVos));
    }

    /**
     * 计算文章分值
     * @param apArticleList
     * @return
     */
    private List<HotArticleVo> computeHotArticle(List<ApArticle> apArticleList) {

        List<HotArticleVo> hotArticleVoList = new ArrayList<>();

        if(apArticleList != null && apArticleList.size() > 0){
            for (ApArticle apArticle : apArticleList) {
                HotArticleVo hot = new HotArticleVo();
                BeanUtils.copyProperties(apArticle,hot);
                Integer score = computeScore(apArticle);
                hot.setScore(score);
                hotArticleVoList.add(hot);
            }
        }
        return hotArticleVoList;
    }

    /**
     * 计算文章的具体分值
     * @param apArticle
     * @return
     */
    private Integer computeScore(ApArticle apArticle) {
        Integer scere = 0;
        if(apArticle.getLikes() != null){
            scere += apArticle.getLikes() * ArticleConstants.HOT_ARTICLE_LIKE_WEIGHT;
        }
        if(apArticle.getViews() != null){
            scere += apArticle.getViews();
        }
        if(apArticle.getComment() != null){
            scere += apArticle.getComment() * ArticleConstants.HOT_ARTICLE_COMMENT_WEIGHT;
        }
        if(apArticle.getCollection() != null){
            scere += apArticle.getCollection() * ArticleConstants.HOT_ARTICLE_COLLECTION_WEIGHT;
        }

        return scere;
    }
}

在ArticleApplication的引导类中添加以下注解

java 复制代码
@EnableFeignClients(basePackages = "com.heima.apis")

现在数据库中准备点数据

java 复制代码
package com.heima.article.service.impl;

import com.heima.article.ArticleApplication;
import com.heima.article.service.HotArticleService;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@SpringBootTest(classes = ArticleApplication.class)
@RunWith(SpringRunner.class)
public class HotArticleServiceImplTest {

    @Autowired
    private HotArticleService hotArticleService;

    @Test
    public void computeHotArticle() {
        hotArticleService.computeHotArticle();
    }
}
3.3.3 xxl-job定时计算-步骤

①:在heima-leadnews-article中的pom文件中新增依赖

xml 复制代码
<!--xxl-job-->
<dependency>
    <groupId>com.xuxueli</groupId>
    <artifactId>xxl-job-core</artifactId>
    <version>2.3.0</version>
</dependency>

② 在xxl-job-admin中新建执行器和任务

新建执行器:leadnews-hot-article-executor

新建任务:路由策略为轮询,Cron表达式:0 0 2 * * ?

③ leadnews-article中集成xxl-job

XxlJobConfig

java 复制代码
package com.heima.article.config;

import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * xxl-job config
 *
 * @author xuxueli 2017-04-28
 */
@Configuration
public class XxlJobConfig {
    private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);

    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;

    @Value("${xxl.job.executor.appname}")
    private String appname;

    @Value("${xxl.job.executor.port}")
    private int port;


    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        logger.info(">>>>>>>>>>> xxl-job config init.");
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setPort(port);
        return xxlJobSpringExecutor;
    }


}

在nacos配置新增配置

yaml 复制代码
xxl:
  job:
    admin:
      addresses: http://192.168.200.130:8888/xxl-job-admin
    executor:
      appname: leadnews-hot-article-executor
      port: 9999

④:在article微服务中新建任务类

java 复制代码
package com.heima.article.job;

import com.heima.article.service.HotArticleService;
import com.xxl.job.core.handler.annotation.XxlJob;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
@Slf4j
public class ComputeHotArticleJob {

    @Autowired
    private HotArticleService hotArticleService;

    @XxlJob("computeHotArticleJob")
    public void handle(){
        log.info("热文章分值计算调度任务开始执行...");
        hotArticleService.computeHotArticle();
        log.info("热文章分值计算调度任务结束...");

    }
}

4.查询文章接口改造

4.1 思路分析

4.2 功能实现

4.2.1 在ApArticleService中新增方法
java 复制代码
/**
     * 加载文章列表
     * @param dto
     * @param type  1 加载更多   2 加载最新
     * @param firstPage  true  是首页  flase 非首页
     * @return
     */
public ResponseResult load2(ArticleHomeDto dto,Short type,boolean firstPage);

实现方法

java 复制代码
/**
     * 加载文章列表
     * @param dto
     * @param type      1 加载更多   2 加载最新
     * @param firstPage true  是首页  flase 非首页
     * @return
     */
@Override
public ResponseResult load2(ArticleHomeDto dto, Short type, boolean firstPage) {
    if(firstPage){
        String jsonStr = cacheService.get(ArticleConstants.HOT_ARTICLE_FIRST_PAGE + dto.getTag());
        if(StringUtils.isNotBlank(jsonStr)){
            List<HotArticleVo> hotArticleVoList = JSON.parseArray(jsonStr, HotArticleVo.class);
            ResponseResult responseResult = ResponseResult.okResult(hotArticleVoList);
            return responseResult;
        }
    }
    return load(type,dto);
}
4.2.2 修改控制器
java 复制代码
/**
     * 加载首页
     * @param dto
     * @return
     */
@PostMapping("/load")
public ResponseResult load(@RequestBody ArticleHomeDto dto){
    //        return apArticleService.load(dto, ArticleConstants.LOADTYPE_LOAD_MORE);
    return apArticleService.load2(dto, ArticleConstants.LOADTYPE_LOAD_MORE,true);
}
相关推荐
短剑重铸之日4 天前
《SpringCloud实用版》Stream + RocketMQ 实现可靠消息 & 事务消息
后端·rocketmq·springcloud·消息中间件·事务消息
没有bug.的程序员5 天前
Spring Cloud Stream:消息驱动微服务的实战与 Kafka 集成终极指南
java·微服务·架构·kafka·stream·springcloud·消息驱动
没有bug.的程序员6 天前
Spring Cloud Gateway:API网关限流与熔断实战
java·开发语言·数据库·spring boot·gateway·api·springcloud
wfsm10 天前
nacos和openfeign
springcloud
无心水10 天前
【分布式利器:腾讯TSF】11、腾讯TSF微服务框架深度对比:全面解析TSF vs Spring Cloud vs Dubbo vs Service Mesh
分布式·spring cloud·微服务·dubbo·springcloud·service mesh·分布式利器
sunnyday042611 天前
Spring Cloud Alibaba Sentinel 流量控制与熔断降级实战指南
spring boot·sentinel·springcloud
悟空码字14 天前
Spring Cloud 集成 Nacos,全面的配置中心与服务发现解决方案
java·nacos·springcloud·编程技术·后端开发
坐不住的爱码21 天前
Bootstrap和application.yml
springcloud
悟空码字21 天前
Spring Cloud Gateway实战,从零搭建API网关,构建高性能微服务统一入口
java·gateway·springcloud·编程技术·后端开发
没有bug.的程序员23 天前
Service Mesh 与 Spring Cloud 共存方案:双体系治理、平滑迁移与风险控制实战指南
云原生·springcloud·流量治理·混合架构·servicemesh·微服务迁移·技术演进